Azure Private Link lets you connect your virtual network to Azure services without a public IP address at the source or destination. The Private Link platform handles the connectivity between the consumer and services over the Azure backbone network. By mapping private endpoints to the IoT Hub device provisioning service, data leakage risks are reduced. Learn more about private links at: https://aka.ms/iotdpsvnet.
The following 37 compliance controls are associated with this Policy definition 'IoT Hub device provisioning service instances should use private link' (df39c015-56a4-45de-b4a3-efe77bed320d)
The organization:
a. Establishes and documents usage restrictions, configuration/connection requirements, and implementation guidance for each type of remote access allowed; and
b. Authorizes remote access to the information system prior to allowing such connections.
Supplemental Guidance: Remote access is access to organizational information systems by users (or processes acting on behalf of users) communicating through external networks (e.g., the Internet). Remote access methods include, for example, dial-up, broadband, and wireless. Organizations often employ encrypted virtual private networks (VPNs) to enhance confidentiality and integrity over remote connections. The use of encrypted VPNs does not make the access non-remote; however, the use of VPNs, when adequately provisioned with appropriate security controls (e.g., employing appropriate encryption techniques for confidentiality and integrity protection) may provide sufficient assurance to the organization that it can effectively treat such connections as internal networks. Still, VPN connections traverse external networks, and the encrypted VPN does not enhance the availability of remote connections. Also, VPNs with encrypted tunnels can affect the organizational capability to adequately monitor network communications traffic for malicious code. Remote access controls apply to information systems other than public web servers or systems designed for public access. This control addresses authorization prior to allowing remote access without specifying the formats for such authorization. While organizations may use interconnection security agreements to authorize remote access connections, such agreements are not required by this control. Enforcing access restrictions for remote connections is addressed in AC-3. Related controls: AC-2, AC-3, AC-18, AC-19, AC-20, CA-3, CA-7, CM-8, IA-2, IA-3, IA-8, MA-4, PE-17, PL-4, SC-10, SI-4.
References: NIST Special Publications 800-46, 800-77, 800-113, 800-114, 800-121.
The information system monitors and controls remote access methods.
Supplemental Guidance: Automated monitoring and control of remote access sessions allows organizations to detect cyber attacks and also ensure ongoing compliance with remote access policies by auditing connection activities of remote users on a variety of information system components (e.g., servers, workstations, notebook computers, smart phones, and tablets). Related controls: AU-2, AU-12.
The information system enforces approved authorizations for controlling the flow of information within the system and between interconnected systems based on [Assignment: organization-defined information flow control policies].
Supplemental Guidance: Information flow control regulates where information is allowed to travel within an information system and between information systems (as opposed to who is allowed to access the information) and without explicit regard to subsequent accesses to that information. Flow control restrictions include, for example, keeping export-controlled information from being transmitted in the clear to the Internet, blocking outside traffic that claims to be from within the organization, restricting web requests to the Internet that are not from the internal web proxy server, and limiting information transfers between organizations based on data structures and content. Transferring information between information systems representing different security domains with different security policies introduces risk that such transfers violate one or more domain security policies. In such situations, information owners/stewards provide guidance at designated policy enforcement points between interconnected systems. Organizations consider mandating specific architectural solutions when required to enforce specific security policies. Enforcement includes, for example: (i) prohibiting information transfers between interconnected systems (i.e., allowing access only); (ii) employing hardware mechanisms to enforce one-way information flows; and (iii) implementing trustworthy regarding mechanisms to reassign security attributes and security labels.
Organizations commonly employ information flow control policies and enforcement mechanisms to control the flow of information between designated sources and destinations (e.g., networks, individuals, and devices) within information systems and between interconnected systems. Flow control is based on the characteristics of the information and/or the information path. Enforcement occurs, for example, in boundary protection devices (e.g., gateways, routers, guards, encrypted tunnels, firewalls) that employ rule sets or establish configuration settings that restrict information system services, provide a packet-filtering capability based on header information, or message- filtering capability based on message content (e.g., implementing key word searches or using document characteristics). Organizations also consider the trustworthiness of filtering/inspection mechanisms (i.e., hardware, firmware, and software components) that are critical to information flow enforcement. Control enhancements 3 through 22 primarily address cross-domain solution needs which focus on more advanced filtering techniques, in-depth analysis, and stronger flow enforcement mechanisms implemented in cross-domain products, for example, high-assurance guards. Such capabilities are generally not available in commercial off-the-shelf information technology products. Related controls: AC-3, AC-17, AC-19, AC-21, CM-6, CM-7, SA-8, SC-2, SC-5, SC-7, SC-18.
References: None.
The information system:
a. Monitors and controls communications at the external boundary of the system and at key internal boundaries within the system;
b. Implements subnetworks for publicly accessible system components that are [Selection: physically; logically] separated from internal organizational networks; and
c. Connects to external networks or information systems only through managed interfaces consisting of boundary protection devices arranged in accordance with an organizational security architecture.
Supplemental Guidance: Managed interfaces include, for example, gateways, routers, firewalls, guards, network-based malicious code analysis and virtualization systems, or encrypted tunnels implemented within a security architecture (e.g., routers protecting firewalls or application gateways residing on protected subnetworks). Subnetworks that are physically or logically separated from internal networks are referred to as demilitarized zones or DMZs. Restricting or prohibiting interfaces within organizational information systems includes, for example, restricting external web traffic to designated web servers within managed interfaces and prohibiting external traffic that appears to be spoofing internal addresses. Organizations consider the shared nature of commercial telecommunications services in the implementation of security controls associated with the use of such services. Commercial telecommunications services are commonly based on network components and consolidated management systems shared by all attached commercial customers, and may also include third party-provided access lines and other service elements. Such transmission services may represent sources of increased risk despite contract security provisions. Related controls: AC-4, AC-17, CA-3, CM-7, CP-8, IR-4, RA-3, SC-5, SC-13.
References: FIPS Publication 199; NIST Special Publications 800-41, 800-77.
The organization limits the number of external network connections to the information system.
Supplemental Guidance: Limiting the number of external network connections facilitates more comprehensive monitoring of inbound and outbound communications traffic. The Trusted Internet Connection (TIC) initiative is an example of limiting the number of external network connections.
The organization:
a. Establishes and documents usage restrictions, configuration/connection requirements, and implementation guidance for each type of remote access allowed; and
b. Authorizes remote access to the information system prior to allowing such connections.
Supplemental Guidance: Remote access is access to organizational information systems by users (or processes acting on behalf of users) communicating through external networks (e.g., the Internet). Remote access methods include, for example, dial-up, broadband, and wireless. Organizations often employ encrypted virtual private networks (VPNs) to enhance confidentiality and integrity over remote connections. The use of encrypted VPNs does not make the access non-remote; however, the use of VPNs, when adequately provisioned with appropriate security controls (e.g., employing appropriate encryption techniques for confidentiality and integrity protection) may provide sufficient assurance to the organization that it can effectively treat such connections as internal networks. Still, VPN connections traverse external networks, and the encrypted VPN does not enhance the availability of remote connections. Also, VPNs with encrypted tunnels can affect the organizational capability to adequately monitor network communications traffic for malicious code. Remote access controls apply to information systems other than public web servers or systems designed for public access. This control addresses authorization prior to allowing remote access without specifying the formats for such authorization. While organizations may use interconnection security agreements to authorize remote access connections, such agreements are not required by this control. Enforcing access restrictions for remote connections is addressed in AC-3. Related controls: AC-2, AC-3, AC-18, AC-19, AC-20, CA-3, CA-7, CM-8, IA-2, IA-3, IA-8, MA-4, PE-17, PL-4, SC-10, SI-4.
References: NIST Special Publications 800-46, 800-77, 800-113, 800-114, 800-121.
The information system monitors and controls remote access methods.
Supplemental Guidance: Automated monitoring and control of remote access sessions allows organizations to detect cyber attacks and also ensure ongoing compliance with remote access policies by auditing connection activities of remote users on a variety of information system components (e.g., servers, workstations, notebook computers, smart phones, and tablets). Related controls: AU-2, AU-12.
The information system enforces approved authorizations for controlling the flow of information within the system and between interconnected systems based on [Assignment: organization-defined information flow control policies].
Supplemental Guidance: Information flow control regulates where information is allowed to travel within an information system and between information systems (as opposed to who is allowed to access the information) and without explicit regard to subsequent accesses to that information. Flow control restrictions include, for example, keeping export-controlled information from being transmitted in the clear to the Internet, blocking outside traffic that claims to be from within the organization, restricting web requests to the Internet that are not from the internal web proxy server, and limiting information transfers between organizations based on data structures and content. Transferring information between information systems representing different security domains with different security policies introduces risk that such transfers violate one or more domain security policies. In such situations, information owners/stewards provide guidance at designated policy enforcement points between interconnected systems. Organizations consider mandating specific architectural solutions when required to enforce specific security policies. Enforcement includes, for example: (i) prohibiting information transfers between interconnected systems (i.e., allowing access only); (ii) employing hardware mechanisms to enforce one-way information flows; and (iii) implementing trustworthy regarding mechanisms to reassign security attributes and security labels.
Organizations commonly employ information flow control policies and enforcement mechanisms to control the flow of information between designated sources and destinations (e.g., networks, individuals, and devices) within information systems and between interconnected systems. Flow control is based on the characteristics of the information and/or the information path. Enforcement occurs, for example, in boundary protection devices (e.g., gateways, routers, guards, encrypted tunnels, firewalls) that employ rule sets or establish configuration settings that restrict information system services, provide a packet-filtering capability based on header information, or message- filtering capability based on message content (e.g., implementing key word searches or using document characteristics). Organizations also consider the trustworthiness of filtering/inspection mechanisms (i.e., hardware, firmware, and software components) that are critical to information flow enforcement. Control enhancements 3 through 22 primarily address cross-domain solution needs which focus on more advanced filtering techniques, in-depth analysis, and stronger flow enforcement mechanisms implemented in cross-domain products, for example, high-assurance guards. Such capabilities are generally not available in commercial off-the-shelf information technology products. Related controls: AC-3, AC-17, AC-19, AC-21, CM-6, CM-7, SA-8, SC-2, SC-5, SC-7, SC-18.
References: None.
The information system:
a. Monitors and controls communications at the external boundary of the system and at key internal boundaries within the system;
b. Implements subnetworks for publicly accessible system components that are [Selection: physically; logically] separated from internal organizational networks; and
c. Connects to external networks or information systems only through managed interfaces consisting of boundary protection devices arranged in accordance with an organizational security architecture.
Supplemental Guidance: Managed interfaces include, for example, gateways, routers, firewalls, guards, network-based malicious code analysis and virtualization systems, or encrypted tunnels implemented within a security architecture (e.g., routers protecting firewalls or application gateways residing on protected subnetworks). Subnetworks that are physically or logically separated from internal networks are referred to as demilitarized zones or DMZs. Restricting or prohibiting interfaces within organizational information systems includes, for example, restricting external web traffic to designated web servers within managed interfaces and prohibiting external traffic that appears to be spoofing internal addresses. Organizations consider the shared nature of commercial telecommunications services in the implementation of security controls associated with the use of such services. Commercial telecommunications services are commonly based on network components and consolidated management systems shared by all attached commercial customers, and may also include third party-provided access lines and other service elements. Such transmission services may represent sources of increased risk despite contract security provisions. Related controls: AC-4, AC-17, CA-3, CM-7, CP-8, IR-4, RA-3, SC-5, SC-13.
References: FIPS Publication 199; NIST Special Publications 800-41, 800-77.
The organization limits the number of external network connections to the information system.
Supplemental Guidance: Limiting the number of external network connections facilitates more comprehensive monitoring of inbound and outbound communications traffic. The Trusted Internet Connection (TIC) initiative is an example of limiting the number of external network connections.
Limit system access to authorized users, processes acting on behalf of authorized users, and devices (including other systems).
Shared
Microsoft and the customer share responsibilities for implementing this requirement.
Access control policies (e.g., identity- or role-based policies, control matrices, and cryptography) control access between active entities or subjects (i.e., users or processes acting on behalf of users) and passive entities or objects (e.g., devices, files, records, and domains) in systems. Access enforcement mechanisms can be employed at the application and service level to provide increased information security. Other systems include systems internal and external to the organization. This requirement focuses on account management for systems and applications. The definition of and enforcement of access authorizations, other than those determined by account type (e.g., privileged verses non-privileged) are addressed in requirement 3.1.2.
Microsoft and the customer share responsibilities for implementing this requirement.
Remote access is access to organizational systems by users (or processes acting on behalf of users) communicating through external networks (e.g., the Internet). Remote access methods include dial-up, broadband, and wireless. Organizations often employ encrypted virtual private networks (VPNs) to enhance confidentiality over remote connections. The use of encrypted VPNs does not make the access non-remote; however, the use of VPNs, when adequately provisioned with appropriate control (e.g., employing encryption techniques for confidentiality protection), may provide sufficient assurance to the organization that it can effectively treat such connections as internal networks. VPNs with encrypted tunnels can affect the capability to adequately monitor network communications traffic for malicious code. Automated monitoring and control of remote access sessions allows organizations to detect cyber-attacks and help to ensure ongoing compliance with remote access policies by auditing connection activities of remote users on a variety of system components (e.g., servers, workstations, notebook computers, smart phones, and tablets). [SP 800-46], [SP 800-77], and [SP 800-113] provide guidance on secure remote access and virtual private networks.
Employ cryptographic mechanisms to protect the confidentiality of remote access sessions.
Shared
Microsoft and the customer share responsibilities for implementing this requirement.
Cryptographic standards include FIPS-validated cryptography and NSA-approved cryptography. See [NIST CRYPTO]; [NIST CAVP]; [NIST CMVP]; National Security Agency Cryptographic Standards.
Route remote access via managed access control points.
Shared
The customer is responsible for implementing this requirement.
Routing remote access through managed access control points enhances explicit, organizational control over such connections, reducing the susceptibility to unauthorized access to organizational systems resulting in the unauthorized disclosure of CUI.
Control the flow of CUI in accordance with approved authorizations.
Shared
Microsoft and the customer share responsibilities for implementing this requirement.
Information flow control regulates where information can travel within a system and between systems (versus who can access the information) and without explicit regard to subsequent accesses to that information. Flow control restrictions include the following: keeping export-controlled information from being transmitted in the clear to the Internet; blocking outside traffic that claims to be from within the organization; restricting requests to the Internet that are not from the internal web proxy server; and limiting information transfers between organizations based on data structures and content. Organizations commonly use information flow control policies and enforcement mechanisms to control the flow of information between designated sources and destinations (e.g., networks, individuals, and devices) within systems and between interconnected systems. Flow control is based on characteristics of the information or the information path. Enforcement occurs in boundary protection devices (e.g., gateways, routers, guards, encrypted tunnels, firewalls) that employ rule sets or establish configuration settings that restrict system services, provide a packet-filtering capability based on header information, or message-filtering capability based on message content (e.g., implementing key word searches or using document characteristics). Organizations also consider the trustworthiness of filtering and inspection mechanisms (i.e., hardware, firmware, and software components) that are critical to information flow enforcement. Transferring information between systems representing different security domains with different security policies introduces risk that such transfers violate one or more domain security policies. In such situations, information owners or stewards provide guidance at designated policy enforcement points between interconnected systems. Organizations consider mandating specific architectural solutions when required to enforce specific security policies. Enforcement includes: prohibiting information transfers between interconnected systems (i.e., allowing access only); employing hardware mechanisms to enforce one-way information flows; and implementing trustworthy regrading mechanisms to reassign security attributes and security labels.
Monitor, control, and protect communications (i.e., information transmitted or received by organizational systems) at the external boundaries and key internal boundaries of organizational systems.
Shared
Microsoft and the customer share responsibilities for implementing this requirement.
Communications can be monitored, controlled, and protected at boundary components and by restricting or prohibiting interfaces in organizational systems. Boundary components include gateways, routers, firewalls, guards, network-based malicious code analysis and virtualization systems, or encrypted tunnels implemented within a system security architecture (e.g., routers protecting firewalls or application gateways residing on protected subnetworks). Restricting or prohibiting interfaces in organizational systems includes restricting external web communications traffic to designated web servers within managed interfaces and prohibiting external traffic that appears to be spoofing internal addresses. Organizations consider the shared nature of commercial telecommunications services in the implementation of security requirements associated with the use of such services. Commercial telecommunications services are commonly based on network components and consolidated management systems shared by all attached commercial customers and may also include third party-provided access lines and other service elements. Such transmission services may represent sources of increased risk despite contract security provisions. [SP 800-41] provides guidance on firewalls and firewall policy. [SP 800-125B] provides guidance on security for virtualization technologies.
[28] There is no prescribed format or specified level of detail for system security plans. However, organizations ensure that the required information in 3.12.4 is conveyed in those plans.
Employ architectural designs, software development techniques, and systems engineering principles that promote effective information security within organizational systems.
Shared
Microsoft and the customer share responsibilities for implementing this requirement.
Organizations apply systems security engineering principles to new development systems or systems undergoing major upgrades. For legacy systems, organizations apply systems security engineering principles to system upgrades and modifications to the extent feasible, given the current state of hardware, software, and firmware components within those systems. The application of systems security engineering concepts and principles helps to develop trustworthy, secure, and resilient systems and system components and reduce the susceptibility of organizations to disruptions, hazards, and threats. Examples of these concepts and principles include developing layered protections; establishing security policies, architecture, and controls as the foundation for design; incorporating security requirements into the system development life cycle; delineating physical and logical security boundaries; ensuring that developers are trained on how to build secure software; and performing threat modeling to identify use cases, threat agents, attack vectors and patterns, design patterns, and compensating controls needed to mitigate risk. Organizations that apply security engineering concepts and principles can facilitate the development of trustworthy, secure systems, system components, and system services; reduce risk to acceptable levels; and make informed risk-management decisions. [SP 800-160-1] provides guidance on systems security engineering.
Implement subnetworks for publicly accessible system components that are physically or logically separated from internal networks.
Shared
Microsoft and the customer share responsibilities for implementing this requirement.
Subnetworks that are physically or logically separated from internal networks are referred to as demilitarized zones (DMZs). DMZs are typically implemented with boundary control devices and techniques that include routers, gateways, firewalls, virtualization, or cloud-based technologies. [SP 800-41] provides guidance on firewalls and firewall policy. [SP 800-125B] provides guidance on security for virtualization technologies
The organization:
a. Establishes and documents usage restrictions, configuration/connection requirements, and implementation guidance for each type of remote access allowed; and
b. Authorizes remote access to the information system prior to allowing such connections.
Supplemental Guidance: Remote access is access to organizational information systems by users (or processes acting on behalf of users) communicating through external networks (e.g., the Internet). Remote access methods include, for example, dial-up, broadband, and wireless. Organizations often employ encrypted virtual private networks (VPNs) to enhance confidentiality and integrity over remote connections. The use of encrypted VPNs does not make the access non-remote; however, the use of VPNs, when adequately provisioned with appropriate security controls (e.g., employing appropriate encryption techniques for confidentiality and integrity protection) may provide sufficient assurance to the organization that it can effectively treat such connections as internal networks. Still, VPN connections traverse external networks, and the encrypted VPN does not enhance the availability of remote connections. Also, VPNs with encrypted tunnels can affect the organizational capability to adequately monitor network communications traffic for malicious code. Remote access controls apply to information systems other than public web servers or systems designed for public access. This control addresses authorization prior to allowing remote access without specifying the formats for such authorization. While organizations may use interconnection security agreements to authorize remote access connections, such agreements are not required by this control. Enforcing access restrictions for remote connections is addressed in AC-3. Related controls: AC-2, AC-3, AC-18, AC-19, AC-20, CA-3, CA-7, CM-8, IA-2, IA-3, IA-8, MA-4, PE-17, PL-4, SC-10, SI-4.
References: NIST Special Publications 800-46, 800-77, 800-113, 800-114, 800-121.
The information system monitors and controls remote access methods.
Supplemental Guidance: Automated monitoring and control of remote access sessions allows organizations to detect cyber attacks and also ensure ongoing compliance with remote access policies by auditing connection activities of remote users on a variety of information system components (e.g., servers, workstations, notebook computers, smart phones, and tablets). Related controls: AU-2, AU-12.
The information system enforces approved authorizations for controlling the flow of information within the system and between interconnected systems based on [Assignment: organization-defined information flow control policies].
Supplemental Guidance: Information flow control regulates where information is allowed to travel within an information system and between information systems (as opposed to who is allowed to access the information) and without explicit regard to subsequent accesses to that information. Flow control restrictions include, for example, keeping export-controlled information from being transmitted in the clear to the Internet, blocking outside traffic that claims to be from within the organization, restricting web requests to the Internet that are not from the internal web proxy server, and limiting information transfers between organizations based on data structures and content. Transferring information between information systems representing different security domains with different security policies introduces risk that such transfers violate one or more domain security policies. In such situations, information owners/stewards provide guidance at designated policy enforcement points between interconnected systems. Organizations consider mandating specific architectural solutions when required to enforce specific security policies. Enforcement includes, for example: (i) prohibiting information transfers between interconnected systems (i.e., allowing access only); (ii) employing hardware mechanisms to enforce one-way information flows; and (iii) implementing trustworthy regarding mechanisms to reassign security attributes and security labels.
Organizations commonly employ information flow control policies and enforcement mechanisms to control the flow of information between designated sources and destinations (e.g., networks, individuals, and devices) within information systems and between interconnected systems. Flow control is based on the characteristics of the information and/or the information path. Enforcement occurs, for example, in boundary protection devices (e.g., gateways, routers, guards, encrypted tunnels, firewalls) that employ rule sets or establish configuration settings that restrict information system services, provide a packet-filtering capability based on header information, or message- filtering capability based on message content (e.g., implementing key word searches or using document characteristics). Organizations also consider the trustworthiness of filtering/inspection mechanisms (i.e., hardware, firmware, and software components) that are critical to information flow enforcement. Control enhancements 3 through 22 primarily address cross-domain solution needs which focus on more advanced filtering techniques, in-depth analysis, and stronger flow enforcement mechanisms implemented in cross-domain products, for example, high-assurance guards. Such capabilities are generally not available in commercial off-the-shelf information technology products. Related controls: AC-3, AC-17, AC-19, AC-21, CM-6, CM-7, SA-8, SC-2, SC-5, SC-7, SC-18.
References: None.
The information system:
a. Monitors and controls communications at the external boundary of the system and at key internal boundaries within the system;
b. Implements subnetworks for publicly accessible system components that are [Selection: physically; logically] separated from internal organizational networks; and
c. Connects to external networks or information systems only through managed interfaces consisting of boundary protection devices arranged in accordance with an organizational security architecture.
Supplemental Guidance: Managed interfaces include, for example, gateways, routers, firewalls, guards, network-based malicious code analysis and virtualization systems, or encrypted tunnels implemented within a security architecture (e.g., routers protecting firewalls or application gateways residing on protected subnetworks). Subnetworks that are physically or logically separated from internal networks are referred to as demilitarized zones or DMZs. Restricting or prohibiting interfaces within organizational information systems includes, for example, restricting external web traffic to designated web servers within managed interfaces and prohibiting external traffic that appears to be spoofing internal addresses. Organizations consider the shared nature of commercial telecommunications services in the implementation of security controls associated with the use of such services. Commercial telecommunications services are commonly based on network components and consolidated management systems shared by all attached commercial customers, and may also include third party-provided access lines and other service elements. Such transmission services may represent sources of increased risk despite contract security provisions. Related controls: AC-4, AC-17, CA-3, CM-7, CP-8, IR-4, RA-3, SC-5, SC-13.
References: FIPS Publication 199; NIST Special Publications 800-41, 800-77.
The organization limits the number of external network connections to the information system.
Supplemental Guidance: Limiting the number of external network connections facilitates more comprehensive monitoring of inbound and outbound communications traffic. The Trusted Internet Connection (TIC) initiative is an example of limiting the number of external network connections.
a. Establish and document usage restrictions, configuration/connection requirements, and implementation guidance for each type of remote access allowed; and
b. Authorize each type of remote access to the system prior to allowing such connections.
Enforce approved authorizations for controlling the flow of information within the system and between connected systems based on [Assignment: organization-defined information flow control policies].
a. Monitor and control communications at the external managed interfaces to the system and at key internal managed interfaces within the system;
b. Implement subnetworks for publicly accessible system components that are [Selection: physically;logically] separated from internal organizational networks; and
c. Connect to external networks or systems only through managed interfaces consisting of boundary protection devices arranged in accordance with an organizational security and privacy architecture.