last sync: 2024-Apr-24 17:46:58 UTC

Flow logs should be configured for every network security group

Azure BuiltIn Policy definition

Source Azure Portal
Display name Flow logs should be configured for every network security group
Id c251913d-7d24-4958-af87-478ed3b9ba41
Version 1.1.0
Details on versioning
Category Network
Microsoft Learn
Description Audit for network security groups to verify if flow logs are configured. Enabling flow logs allows to log information about IP traffic flowing through network security group. It can be used for optimizing network flows, monitoring throughput, verifying compliance, detecting intrusions and more.
Mode Indexed
Type BuiltIn
Preview False
Deprecated False
Effect Default
Audit
Allowed
Audit, Disabled
RBAC role(s) none
Rule aliases IF (1)
Alias Namespace ResourceType DefaultPath Modifiable
Microsoft.Network/networkSecurityGroups/flowLogs[*] Microsoft.Network networkSecurityGroups properties.flowLogs[*] false
Rule resource types IF (1)
Microsoft.Network/networkSecurityGroups
Compliance
The following 13 compliance controls are associated with this Policy definition 'Flow logs should be configured for every network security group' (c251913d-7d24-4958-af87-478ed3b9ba41)
Control Domain Control Name MetadataId Category Title Owner Requirements Description Info Policy#
CIS_Azure_2.0.0 5.1.6 CIS_Azure_2.0.0_5.1.6 CIS Microsoft Azure Foundations Benchmark recommendation 5.1.6 5.1 Ensure that Network Security Group Flow logs are captured and sent to Log Analytics Shared The impact of configuring NSG Flow logs is primarily one of cost and configuration. If deployed, it will create storage accounts that hold minimal amounts of data on a 5-day lifecycle before feeding to Log Analytics Workspace. This will increase the amount of data stored and used by Azure Monitor. Ensure that network flow logs are captured and fed into a central log analytics workspace. Network Flow Logs provide valuable insight into the flow of traffic around your network and feed into both Azure Monitor and Azure Sentinel (if in use), permitting the generation of visual flow diagrams to aid with analyzing for lateral movement, etc. link 3
CMMC_2.0_L2 SC.L1-3.13.1 CMMC_2.0_L2_SC.L1-3.13.1 404 not found n/a n/a 57
CMMC_2.0_L2 SI.L2-3.14.6 CMMC_2.0_L2_SI.L2-3.14.6 404 not found n/a n/a 28
CMMC_L3 IR.2.093 CMMC_L3_IR.2.093 CMMC L3 IR.2.093 Incident Response Detect and report events. Shared Microsoft and the customer share responsibilities for implementing this requirement. The monitoring, identification, and reporting of events are the foundation for incident identification and commence the incident life cycle. Events potentially affect the productivity of organizational assets and, in turn, associated services. These events must be captured and analyzed so that the organization can determine whether an event will become (or has become) an incident that requires organizational action. The extent to which an organization can identify events improves its ability to manage and control incidents and their potential effects. link 19
CMMC_L3 SC.1.175 CMMC_L3_SC.1.175 CMMC L3 SC.1.175 System and Communications Protection Monitor, control, and protect communications (i.e., information transmitted or received by organizational systems) at the external boundaries and key internal boundaries of organizational systems. Shared Microsoft and the customer share responsibilities for implementing this requirement. Communications can be monitored, controlled, and protected at boundary components and by restricting or prohibiting interfaces in organizational systems. Boundary components include gateways, routers, firewalls, guards, network-based malicious code analysis and virtualization systems, or encrypted tunnels implemented within a system security architecture (e.g., routers protecting firewalls or application gateways residing on protected subnetworks). Restricting or prohibiting interfaces in organizational systems includes restricting external web communications traffic to designated web servers within managed interfaces and prohibiting external traffic that appears to be spoofing internal addresses. Organizations consider the shared nature of commercial telecommunications services in the implementation of security requirements associated with the use of such services. Commercial telecommunications services are commonly based on network components and consolidated management systems shared by all attached commercial customers and may also include third party-provided access lines and other service elements. Such transmission services may represent sources of increased risk despite contract security provisions. link 31
CMMC_L3 SC.3.183 CMMC_L3_SC.3.183 CMMC L3 SC.3.183 System and Communications Protection Deny network communications traffic by default and allow network communications traffic by exception (i.e., deny all, permit by exception). Shared Microsoft and the customer share responsibilities for implementing this requirement. This requirement applies to inbound and outbound network communications traffic at the system boundary and at identified points within the system. A deny-all, permit-by-exception network communications traffic policy ensures that only those connections which are essential and approved are allowed. link 31
CMMC_L3 SI.2.216 CMMC_L3_SI.2.216 CMMC L3 SI.2.216 System and Information Integrity Monitor organizational systems, including inbound and outbound communications traffic, to detect attacks and indicators of potential attacks. Shared Microsoft and the customer share responsibilities for implementing this requirement. System monitoring includes external and internal monitoring. External monitoring includes the observation of events occurring at the system boundary (i.e., part of perimeter defense and boundary protection). Internal monitoring includes the observation of events occurring within the system. Organizations can monitor systems, for example, by observing audit record activities in real time or by observing other system aspects such as access patterns, characteristics of access, and other actions. The monitoring objectives may guide determination of the events. System monitoring capability is achieved through a variety of tools and techniques (e.g., intrusion detection systems, intrusion prevention systems, malicious code protection software, scanning tools, audit record monitoring software, network monitoring software). Strategic locations for monitoring devices include selected perimeter locations and near server farms supporting critical applications, with such devices being employed at managed system interfaces. The granularity of monitoring information collected is based on organizational monitoring objectives and the capability of systems to support such objectives. System monitoring is an integral part of continuous monitoring and incident response programs. Output from system monitoring serves as input to continuous monitoring and incident response programs. A network connection is any connection with a device that communicates through a network (e.g., local area network, Internet). A remote connection is any connection with a device communicating through an external network (e.g., the Internet). Local, network, and remote connections can be either wired or wireless. Unusual or unauthorized activities or conditions related to inbound/outbound communications traffic include internal traffic that indicates the presence of malicious code in systems or propagating among system components, the unauthorized exporting of information, or signaling to external systems. Evidence of malicious code is used to identify potentially compromised systems or system components. System monitoring requirements, including the need for specific types of system monitoring, may be referenced in other requirements. link 23
RBI_CSF_Banks_v2016 16.1 RBI_CSF_Banks_v2016_16.1 Maintenance, Monitoring, And Analysis Of Audit Logs Maintenance, Monitoring, And Analysis Of Audit Logs-16.1 n/a Consult all the stakeholders before finalising the scope, frequency and storage of log collection. 5
RBI_ITF_NBFC_v2017 3.1.g RBI_ITF_NBFC_v2017_3.1.g RBI IT Framework 3.1.g Information and Cyber Security Trails-3.1 n/a The IS Policy must provide for a IS framework with the following basic tenets: Trails- NBFCs shall ensure that audit trails exist for IT assets satisfying its business requirements including regulatory and legal requirements, facilitating audit, serving as forensic evidence when required and assisting in dispute resolution. If an employee, for instance, attempts to access an unauthorized section, this improper activity should be recorded in the audit trail. link 39
RBI_ITF_NBFC_v2017 5 RBI_ITF_NBFC_v2017_5 RBI IT Framework 5 IS Audit Policy for Information System Audit (IS Audit)-5 n/a The objective of the IS Audit is to provide an insight on the effectiveness of controls that are in place to ensure confidentiality, integrity and availability of the organization???s IT infrastructure. IS Audit shall identify risks and methods to mitigate risk arising out of IT infrastructure such as server architecture, local and wide area networks, physical and information security, telecommunications etc. link 14
RMiT_v1.0 10.33 RMiT_v1.0_10.33 RMiT 10.33 Network Resilience Network Resilience - 10.33 Shared n/a A financial institution must design a reliable, scalable and secure enterprise network that is able to support its business activities, including future growth plans. link 28
RMiT_v1.0 Appendix_5.7 RMiT_v1.0_Appendix_5.7 RMiT Appendix 5.7 Control Measures on Cybersecurity Control Measures on Cybersecurity - Appendix 5.7 Customer n/a Ensure overall network security controls are implemented including the following: (a) dedicated firewalls at all segments. All external-facing firewalls must be deployed on High Availability (HA) configuration and “fail-close” mode activated. Deploy different brand name/model for two firewalls located in sequence within the same network path; (b) IPS at all critical network segments with the capability to inspect and monitor encrypted network traffic; (c) web and email filtering systems such as web-proxy, spam filter and anti-spoofing controls; (d) endpoint protection solution to detect and remove security threats including viruses and malicious software; (e) solution to mitigate advanced persistent threats including zero-day and signatureless malware; and (f) capture the full network packets to rebuild relevant network sessions to aid forensics in the event of incidents. link 27
SWIFT_CSCF_v2022 6.4 SWIFT_CSCF_v2022_6.4 SWIFT CSCF v2022 6.4 6. Detect Anomalous Activity to Systems or Transaction Records Record security events and detect anomalous actions and operations within the local SWIFT environment. Shared n/a Capabilities to detect anomalous activity are implemented, and a process or tool is in place to keep and review logs. link 52
Initiatives usage
Initiative DisplayName Initiative Id Initiative Category State Type
[Preview]: CMMC 2.0 Level 2 4e50fd13-098b-3206-61d6-d1d78205cb45 Regulatory Compliance Preview BuiltIn
[Preview]: Reserve Bank of India - IT Framework for Banks d0d5578d-cc08-2b22-31e3-f525374f235a Regulatory Compliance Preview BuiltIn
[Preview]: Reserve Bank of India - IT Framework for NBFC 7f89f09c-48c1-f28d-1bd5-84f3fb22f86c Regulatory Compliance Preview BuiltIn
CIS Microsoft Azure Foundations Benchmark v2.0.0 06f19060-9e68-4070-92ca-f15cc126059e Regulatory Compliance GA BuiltIn
CMMC Level 3 b5629c75-5c77-4422-87b9-2509e680f8de Regulatory Compliance GA BuiltIn
Flow logs should be configured and enabled for every network security group 62329546-775b-4a3d-a4cb-eb4bb990d2c0 Network GA BuiltIn
RMIT Malaysia 97a6d4f1-3bed-4cf4-ac5b-0e444c0408d6 Regulatory Compliance GA BuiltIn
SWIFT CSP-CSCF v2022 7bc7cd6c-4114-ff31-3cac-59be3157596d Regulatory Compliance GA BuiltIn
History
Date/Time (UTC ymd) (i) Change type Change detail
2021-03-09 14:37:41 change Minor (1.0.0 > 1.1.0)
2020-08-27 15:39:26 add c251913d-7d24-4958-af87-478ed3b9ba41
JSON compare
compare mode: version left: version right:
JSON
api-version=2021-06-01
EPAC