last sync: 2025-Apr-29 17:16:02 UTC

Azure Spring Cloud should use network injection

Azure BuiltIn Policy definition

Source Azure Portal
Display name Azure Spring Cloud should use network injection
Id af35e2a4-ef96-44e7-a9ae-853dd97032c4
Version 1.2.0
Details on versioning
Versioning Versions supported for Versioning: 1
1.2.0
Built-in Versioning [Preview]
Category App Platform
Microsoft Learn
Description Azure Spring Cloud instances should use virtual network injection for the following purposes: 1. Isolate Azure Spring Cloud from Internet. 2. Enable Azure Spring Cloud to interact with systems in either on premises data centers or Azure service in other virtual networks. 3. Empower customers to control inbound and outbound network communications for Azure Spring Cloud.
Cloud environments AzureCloud = true
AzureUSGovernment = unknown
AzureChinaCloud = unknown
Available in AzUSGov Unknown, no evidence if Policy definition is/not available in AzureUSGovernment
Assessment(s) Assessments count: 1
Assessment Id: 4c768356-5ad2-e3cc-c799-252b27d3865a
DisplayName: Azure Spring Cloud should use network injection
Description: Virtual network injection helps isolate the cloud from the internet, reduce the risk of external threats, and enables interaction with systems in on-premises data centers or other Azure services in different virtual networks.
It also provides control over inbound and outbound network communications.

Remediation description: Virtual network injection brings the following benefits to your Azure Spring Cloud instances: 1. Isolates Azure Spring Cloud from the internet. 2. Enables Azure Spring Cloud to interact with systems in either on- premises data centers or Azure services in other virtual networks. 3. Provides greater control over inbound and outbound network communications for Azure Spring Cloud.
Categories: Data
Severity: Medium
preview: True
Mode Indexed
Type BuiltIn
Preview False
Deprecated False
Effect Default
Audit
Allowed
Audit, Disabled, Deny
RBAC role(s) none
Rule aliases IF (2)
Alias Namespace ResourceType Path PathIsDefault DefaultPath Modifiable
Microsoft.AppPlatform/Spring/networkProfile.serviceRuntimeSubnetId Microsoft.AppPlatform Spring properties.networkProfile.serviceRuntimeSubnetId True False
Microsoft.AppPlatform/Spring/sku.tier Microsoft.AppPlatform Spring sku.tier True False
Rule resource types IF (1)
Compliance
The following 74 compliance controls are associated with this Policy definition 'Azure Spring Cloud should use network injection' (af35e2a4-ef96-44e7-a9ae-853dd97032c4)
Control Domain Control Name MetadataId Category Title Owner Requirements Description Info Policy#
Azure_Security_Benchmark_v2.0 NS-2 Azure_Security_Benchmark_v2.0_NS-2 Azure Security Benchmark NS-2 Network Security Connect private networks together Customer Use Azure ExpressRoute or Azure virtual private network (VPN) to create private connections between Azure datacenters and on-premises infrastructure in a colocation environment. ExpressRoute connections do not go over the public internet , and they offer more reliability, faster speeds, and lower latencies than typical internet connections. For point-to-site VPN and site-to-site VPN, you can connect on-premises devices or networks to a virtual network using any combination of these VPN options and Azure ExpressRoute. To connect two or more virtual networks in Azure together, use virtual network peering or Private Link. Network traffic between peered virtual networks is private and is kept on the Azure backbone network. What are the ExpressRoute connectivity models: https://docs.microsoft.com/azure/expressroute/expressroute-connectivity-models Azure VPN overview: https://docs.microsoft.com/azure/vpn-gateway/vpn-gateway-about-vpngateways Virtual network peering: https://docs.microsoft.com/azure/virtual-network/virtual-network-peering-overview Azure Private Link: https://docs.microsoft.com/azure/private-link/private-link-service-overview n/a link 15
Azure_Security_Benchmark_v3.0 NS-2 Azure_Security_Benchmark_v3.0_NS-2 Microsoft cloud security benchmark NS-2 Network Security Secure cloud services with network controls Shared **Security Principle:** Secure cloud services by establishing a private access point for the resources. You should also disable or restrict access from public network when possible. **Azure Guidance:** Deploy private endpoints for all Azure resources that support the Private Link feature, to establish a private access point for the resources. You should also disable or restrict public network access to services where feasible. For certain services, you also have the option to deploy VNet integration for the service where you can restrict the VNET to establish a private access point for the service. **Implementation and additional context:** Understand Azure Private Link: https://docs.microsoft.com/azure/private-link/private-link-overview n/a link 40
Canada_Federal_PBMM_3-1-2020 CA_3 Canada_Federal_PBMM_3-1-2020_CA_3 Canada Federal PBMM 3-1-2020 CA 3 Information System Connections System Interconnections Shared 1. The organization authorizes connection from information system to other information system through the use of Interconnection Security Agreements. 2. The organization documents, for each interconnection, the interface characteristics, security requirements, and the nature of the information communicated. 3. The organization reviews and updates Interconnection Security Agreements annually. To establish and maintain secure connections between information systems. 76
Canada_Federal_PBMM_3-1-2020 CA_3(3) Canada_Federal_PBMM_3-1-2020_CA_3(3) Canada Federal PBMM 3-1-2020 CA 3(3) Information System Connections System Interconnections | Classified Non-National Security System Connections Shared The organization prohibits the direct connection of any internal network or system to an external network without the use of security controls approved by the information owner. To ensure the integrity and security of internal systems against external threats. 76
Canada_Federal_PBMM_3-1-2020 CA_3(5) Canada_Federal_PBMM_3-1-2020_CA_3(5) Canada Federal PBMM 3-1-2020 CA 3(5) Information System Connections System Interconnections | Restrictions on External Network Connections Shared The organization employs allow-all, deny-by-exception; deny-all policy for allowing any systems to connect to external information systems. To enhance security posture against unauthorized access. 76
Canada_Federal_PBMM_3-1-2020 CA_7 Canada_Federal_PBMM_3-1-2020_CA_7 Canada Federal PBMM 3-1-2020 CA 7 Continuous Monitoring Continuous Monitoring Shared 1. The organization develops a continuous monitoring strategy and implements a continuous monitoring program that includes establishment of organization-defined metrics to be monitored. 2. The organization develops a continuous monitoring strategy and implements a continuous monitoring program that includes establishment of at least monthly monitoring and assessments of at least operating system scans, database, and web application scan. 3. The organization develops a continuous monitoring strategy and implements a continuous monitoring program that includes ongoing security control assessments in accordance with the organizational continuous monitoring strategy. 4. The organization develops a continuous monitoring strategy and implements a continuous monitoring program that includes ongoing security status monitoring of organization-defined metrics in accordance with the organizational continuous monitoring strategy. 5. The organization develops a continuous monitoring strategy and implements a continuous monitoring program that includes correlation and analysis of security-related information generated by assessments and monitoring. 6. The organization develops a continuous monitoring strategy and implements a continuous monitoring program that includes response actions to address results of the analysis of security-related information. 7. The organization develops a continuous monitoring strategy and implements a continuous monitoring program that includes reporting the security status of organization and the information system to organization-defined personnel or roles at organization-defined frequency. To ensure the ongoing effectiveness of security controls and maintain the security posture in alignment with organizational objectives and requirements. 124
Canada_Federal_PBMM_3-1-2020 SI_3 Canada_Federal_PBMM_3-1-2020_SI_3 Canada Federal PBMM 3-1-2020 SI 3 Malicious Code Protection Malicious Code Protection Shared 1. The organization employs malicious code protection mechanisms at information system entry and exit points to detect and eradicate malicious code. 2. The organization updates malicious code protection mechanisms whenever new releases are available in accordance with organizational configuration management policy and procedures. 3. The organization configures malicious code protection mechanisms to: a. Perform periodic scans of the information system at least weekly and real-time scans of files from external sources at endpoints and network entry/exit points as the files are downloaded, opened, or executed in accordance with organizational security policy; and b. Block and quarantine malicious code; send alert to the key role as defined in the system and information integrity policy in response to malicious code detection. 4. The organization addresses the receipt of false positives during malicious code detection and eradication and the resulting potential impact on the availability of the information system. To mitigate potential impacts on system availability. 52
Canada_Federal_PBMM_3-1-2020 SI_3(1) Canada_Federal_PBMM_3-1-2020_SI_3(1) Canada Federal PBMM 3-1-2020 SI 3(1) Malicious Code Protection Malicious Code Protection | Central Management Shared The organization centrally manages malicious code protection mechanisms. To centrally manage malicious code protection mechanisms. 51
Canada_Federal_PBMM_3-1-2020 SI_3(2) Canada_Federal_PBMM_3-1-2020_SI_3(2) Canada Federal PBMM 3-1-2020 SI 3(2) Malicious Code Protection Malicious Code Protection | Automatic Updates Shared The information system automatically updates malicious code protection mechanisms. To ensure automatic updates in malicious code protection mechanisms. 51
Canada_Federal_PBMM_3-1-2020 SI_3(7) Canada_Federal_PBMM_3-1-2020_SI_3(7) Canada Federal PBMM 3-1-2020 SI 3(7) Malicious Code Protection Malicious Code Protection | Non Signature-Based Detection Shared The information system implements non-signature-based malicious code detection mechanisms. To enhance overall security posture. 51
Canada_Federal_PBMM_3-1-2020 SI_4 Canada_Federal_PBMM_3-1-2020_SI_4 Canada Federal PBMM 3-1-2020 SI 4 Information System Monitoring Information System Monitoring Shared 1. The organization monitors the information system to detect: a. Attacks and indicators of potential attacks in accordance with organization-defined monitoring objectives; and b. Unauthorized local, network, and remote connections; 2. The organization identifies unauthorized use of the information system through organization-defined techniques and methods. 3. The organization deploys monitoring devices: (i) strategically within the information system to collect organization-determined essential information; and (ii) at ad hoc locations within the system to track specific types of transactions of interest to the organization. 4. The organization protects information obtained from intrusion-monitoring tools from unauthorized access, modification, and deletion. 5. The organization heightens the level of information system monitoring activity whenever there is an indication of increased risk to organizational operations and assets, individuals, other organizations, or Canada based on law enforcement information, intelligence information, or other credible sources of information. 6. The organization obtains legal opinion with regard to information system monitoring activities in accordance with organizational policies, directives and standards. 7. The organization provides organization-defined information system monitoring information to organization-defined personnel or roles at an organization-defined frequency. To enhance overall security posture. 95
Canada_Federal_PBMM_3-1-2020 SI_4(1) Canada_Federal_PBMM_3-1-2020_SI_4(1) Canada Federal PBMM 3-1-2020 SI 4(1) Information System Monitoring Information System Monitoring | System-Wide Intrusion Detection System Shared The organization connects and configures individual intrusion detection tools into an information system-wide intrusion detection system. To enhance overall security posture. 95
Canada_Federal_PBMM_3-1-2020 SI_4(2) Canada_Federal_PBMM_3-1-2020_SI_4(2) Canada Federal PBMM 3-1-2020 SI 4(2) Information System Monitoring Information System Monitoring | Automated Tools for Real-Time Analysis Shared The organization employs automated tools to support near real-time analysis of events. To enhance overall security posture. 94
Canada_Federal_PBMM_3-1-2020 SI_8(1) Canada_Federal_PBMM_3-1-2020_SI_8(1) Canada Federal PBMM 3-1-2020 SI 8(1) Spam Protection Spam Protection | Central Management of Protection Mechanisms Shared The organization centrally manages spam protection mechanisms. To enhance overall security posture. 87
CMMC_2.0_L2 AC.L1-3.1.1 CMMC_2.0_L2_AC.L1-3.1.1 404 not found n/a n/a 54
CMMC_2.0_L2 AC.L2-3.1.12 CMMC_2.0_L2_AC.L2-3.1.12 404 not found n/a n/a 35
CMMC_2.0_L2 AC.L2-3.1.13 CMMC_2.0_L2_AC.L2-3.1.13 404 not found n/a n/a 29
CMMC_2.0_L2 AC.L2-3.1.14 CMMC_2.0_L2_AC.L2-3.1.14 404 not found n/a n/a 29
CMMC_L2_v1.9.0 SC.L1_3.13.1 CMMC_L2_v1.9.0_SC.L1_3.13.1 Cybersecurity Maturity Model Certification (CMMC) Level 2 v1.9.0 SC.L1 3.13.1 System and Communications Protection Boundary Protection Shared Monitor, control, and protect organizational communications (i.e., information transmitted or received by organizational information systems) at the external boundaries and key internal boundaries of the information systems. To protect information assets from external attacks and insider threats. 43
CMMC_L2_v1.9.0 SC.L1_3.13.5 CMMC_L2_v1.9.0_SC.L1_3.13.5 Cybersecurity Maturity Model Certification (CMMC) Level 2 v1.9.0 SC.L1 3.13.5 System and Communications Protection Public Access System Separation Shared Implement subnetworks for publicly accessible system components that are physically or logically separated from internal networks. To control access, monitor traffic, and mitigate the risk of unauthorized access or exploitation of internal resources. 43
CSA_v4.0.12 DSP_05 CSA_v4.0.12_DSP_05 CSA Cloud Controls Matrix v4.0.12 DSP 05 Data Security and Privacy Lifecycle Management Data Flow Documentation Shared n/a Create data flow documentation to identify what data is processed, stored or transmitted where. Review data flow documentation at defined intervals, at least annually, and after any change. 57
CSA_v4.0.12 DSP_10 CSA_v4.0.12_DSP_10 CSA Cloud Controls Matrix v4.0.12 DSP 10 Data Security and Privacy Lifecycle Management Sensitive Data Transfer Shared n/a Define, implement and evaluate processes, procedures and technical measures that ensure any transfer of personal or sensitive data is protected from unauthorized access and only processed within scope as permitted by the respective laws and regulations. 45
EU_2555_(NIS2)_2022 EU_2555_(NIS2)_2022_21 EU_2555_(NIS2)_2022_21 EU 2022/2555 (NIS2) 2022 21 Cybersecurity risk-management measures Shared n/a Requires essential and important entities to take appropriate measures to manage cybersecurity risks. 193
EU_GDPR_2016_679_Art. 24 EU_GDPR_2016_679_Art._24 EU General Data Protection Regulation (GDPR) 2016/679 Art. 24 Chapter 4 - Controller and processor Responsibility of the controller Shared n/a n/a 310
EU_GDPR_2016_679_Art. 25 EU_GDPR_2016_679_Art._25 EU General Data Protection Regulation (GDPR) 2016/679 Art. 25 Chapter 4 - Controller and processor Data protection by design and by default Shared n/a n/a 310
EU_GDPR_2016_679_Art. 28 EU_GDPR_2016_679_Art._28 EU General Data Protection Regulation (GDPR) 2016/679 Art. 28 Chapter 4 - Controller and processor Processor Shared n/a n/a 310
EU_GDPR_2016_679_Art. 32 EU_GDPR_2016_679_Art._32 EU General Data Protection Regulation (GDPR) 2016/679 Art. 32 Chapter 4 - Controller and processor Security of processing Shared n/a n/a 310
FBI_Criminal_Justice_Information_Services_v5.9.5_5 .1 FBI_Criminal_Justice_Information_Services_v5.9.5_5.1 FBI Criminal Justice Information Services (CJIS) v5.9.5 5.1 Policy and Implementation - Systems And Communications Protection Systems And Communications Protection Shared In addition, applications, services, or information systems must have the capability to ensure system integrity through the detection and protection against unauthorized changes to software and information. Examples of systems and communications safeguards range from boundary and transmission protection to securing an agency's virtualized environment. 110
FedRAMP_High_R4 AC-17 FedRAMP_High_R4_AC-17 FedRAMP High AC-17 Access Control Remote Access Shared n/a The organization: a. Establishes and documents usage restrictions, configuration/connection requirements, and implementation guidance for each type of remote access allowed; and b. Authorizes remote access to the information system prior to allowing such connections. Supplemental Guidance: Remote access is access to organizational information systems by users (or processes acting on behalf of users) communicating through external networks (e.g., the Internet). Remote access methods include, for example, dial-up, broadband, and wireless. Organizations often employ encrypted virtual private networks (VPNs) to enhance confidentiality and integrity over remote connections. The use of encrypted VPNs does not make the access non-remote; however, the use of VPNs, when adequately provisioned with appropriate security controls (e.g., employing appropriate encryption techniques for confidentiality and integrity protection) may provide sufficient assurance to the organization that it can effectively treat such connections as internal networks. Still, VPN connections traverse external networks, and the encrypted VPN does not enhance the availability of remote connections. Also, VPNs with encrypted tunnels can affect the organizational capability to adequately monitor network communications traffic for malicious code. Remote access controls apply to information systems other than public web servers or systems designed for public access. This control addresses authorization prior to allowing remote access without specifying the formats for such authorization. While organizations may use interconnection security agreements to authorize remote access connections, such agreements are not required by this control. Enforcing access restrictions for remote connections is addressed in AC-3. Related controls: AC-2, AC-3, AC-18, AC-19, AC-20, CA-3, CA-7, CM-8, IA-2, IA-3, IA-8, MA-4, PE-17, PL-4, SC-10, SI-4. References: NIST Special Publications 800-46, 800-77, 800-113, 800-114, 800-121. link 41
FedRAMP_High_R4 AC-17(1) FedRAMP_High_R4_AC-17(1) FedRAMP High AC-17 (1) Access Control Automated Monitoring / Control Shared n/a The information system monitors and controls remote access methods. Supplemental Guidance: Automated monitoring and control of remote access sessions allows organizations to detect cyber attacks and also ensure ongoing compliance with remote access policies by auditing connection activities of remote users on a variety of information system components (e.g., servers, workstations, notebook computers, smart phones, and tablets). Related controls: AU-2, AU-12. link 37
FedRAMP_Moderate_R4 AC-17 FedRAMP_Moderate_R4_AC-17 FedRAMP Moderate AC-17 Access Control Remote Access Shared n/a The organization: a. Establishes and documents usage restrictions, configuration/connection requirements, and implementation guidance for each type of remote access allowed; and b. Authorizes remote access to the information system prior to allowing such connections. Supplemental Guidance: Remote access is access to organizational information systems by users (or processes acting on behalf of users) communicating through external networks (e.g., the Internet). Remote access methods include, for example, dial-up, broadband, and wireless. Organizations often employ encrypted virtual private networks (VPNs) to enhance confidentiality and integrity over remote connections. The use of encrypted VPNs does not make the access non-remote; however, the use of VPNs, when adequately provisioned with appropriate security controls (e.g., employing appropriate encryption techniques for confidentiality and integrity protection) may provide sufficient assurance to the organization that it can effectively treat such connections as internal networks. Still, VPN connections traverse external networks, and the encrypted VPN does not enhance the availability of remote connections. Also, VPNs with encrypted tunnels can affect the organizational capability to adequately monitor network communications traffic for malicious code. Remote access controls apply to information systems other than public web servers or systems designed for public access. This control addresses authorization prior to allowing remote access without specifying the formats for such authorization. While organizations may use interconnection security agreements to authorize remote access connections, such agreements are not required by this control. Enforcing access restrictions for remote connections is addressed in AC-3. Related controls: AC-2, AC-3, AC-18, AC-19, AC-20, CA-3, CA-7, CM-8, IA-2, IA-3, IA-8, MA-4, PE-17, PL-4, SC-10, SI-4. References: NIST Special Publications 800-46, 800-77, 800-113, 800-114, 800-121. link 41
FedRAMP_Moderate_R4 AC-17(1) FedRAMP_Moderate_R4_AC-17(1) FedRAMP Moderate AC-17 (1) Access Control Automated Monitoring / Control Shared n/a The information system monitors and controls remote access methods. Supplemental Guidance: Automated monitoring and control of remote access sessions allows organizations to detect cyber attacks and also ensure ongoing compliance with remote access policies by auditing connection activities of remote users on a variety of information system components (e.g., servers, workstations, notebook computers, smart phones, and tablets). Related controls: AU-2, AU-12. link 37
FFIEC_CAT_2017 3.1.1 FFIEC_CAT_2017_3.1.1 FFIEC CAT 2017 3.1.1 Cybersecurity Controls Infrastructure Management Shared n/a - Network perimeter defense tools (e.g., border router and firewall) are used. - Systems that are accessed from the Internet or by external parties are protected by firewalls or other similar devices. - All ports are monitored. - Up to date antivirus and anti-malware tools are used. - Systems configurations (for servers, desktops, routers, etc.) follow industry standards and are enforced. - Ports, functions, protocols and services are prohibited if no longer needed for business purposes. - Access to make changes to systems configurations (including virtual machines and hypervisors) is controlled and monitored. - Programs that can override system, object, network, virtual machine, and application controls are restricted. - System sessions are locked after a pre-defined period of inactivity and are terminated after pre-defined conditions are met. - Wireless network environments require security settings with strong encryption for authentication and transmission. (*N/A if there are no wireless networks.) 71
FFIEC_CAT_2017 4.1.1 FFIEC_CAT_2017_4.1.1 FFIEC CAT 2017 4.1.1 External Dependency Management Connections Shared n/a - The critical business processes that are dependent on external connectivity have been identified. - The institution ensures that third-party connections are authorized. - A network diagram is in place and identifies all external connections. - Data flow diagrams are in place and document information flow to external parties. 43
HITRUST_CSF_v11.3 01.m HITRUST_CSF_v11.3_01.m HITRUST CSF v11.3 01.m Network Access Control Ensure segregation in networks. Shared Security gateways, internal network perimeters, wireless network segregation, firewalls, and logical network domains with controlled data flows to be implemented to enhance network security. Groups of information services, users, and information systems should be segregated on networks. 48
HITRUST_CSF_v11.3 01.n HITRUST_CSF_v11.3_01.n HITRUST CSF v11.3 01.n Network Access Control Prevent unauthorised access to shared networks. Shared Default deny policy at managed interfaces, restricted user connections through network gateways, comprehensive access controls, time-based restrictions, and encryption of sensitive information transmitted over public networks for is to be implemented for enhanced security. For shared networks, especially those extending across the organization’s boundaries, the capability of users to connect to the network shall be restricted, in line with the access control policy and requirements of the business applications. 55
New_Zealand_ISM 10.8.35.C.01 New_Zealand_ISM_10.8.35.C.01 New_Zealand_ISM_10.8.35.C.01 10. Infrastructure 10.8.35.C.01 Security Architecture n/a Security architectures MUST apply the principles of separation and segregation. 31
NIST_SP_800-171_R2_3 .1.1 NIST_SP_800-171_R2_3.1.1 NIST SP 800-171 R2 3.1.1 Access Control Limit system access to authorized users, processes acting on behalf of authorized users, and devices (including other systems). Shared Microsoft and the customer share responsibilities for implementing this requirement. Access control policies (e.g., identity- or role-based policies, control matrices, and cryptography) control access between active entities or subjects (i.e., users or processes acting on behalf of users) and passive entities or objects (e.g., devices, files, records, and domains) in systems. Access enforcement mechanisms can be employed at the application and service level to provide increased information security. Other systems include systems internal and external to the organization. This requirement focuses on account management for systems and applications. The definition of and enforcement of access authorizations, other than those determined by account type (e.g., privileged verses non-privileged) are addressed in requirement 3.1.2. link 52
NIST_SP_800-171_R2_3 .1.12 NIST_SP_800-171_R2_3.1.12 NIST SP 800-171 R2 3.1.12 Access Control Monitor and control remote access sessions. Shared Microsoft and the customer share responsibilities for implementing this requirement. Remote access is access to organizational systems by users (or processes acting on behalf of users) communicating through external networks (e.g., the Internet). Remote access methods include dial-up, broadband, and wireless. Organizations often employ encrypted virtual private networks (VPNs) to enhance confidentiality over remote connections. The use of encrypted VPNs does not make the access non-remote; however, the use of VPNs, when adequately provisioned with appropriate control (e.g., employing encryption techniques for confidentiality protection), may provide sufficient assurance to the organization that it can effectively treat such connections as internal networks. VPNs with encrypted tunnels can affect the capability to adequately monitor network communications traffic for malicious code. Automated monitoring and control of remote access sessions allows organizations to detect cyber-attacks and help to ensure ongoing compliance with remote access policies by auditing connection activities of remote users on a variety of system components (e.g., servers, workstations, notebook computers, smart phones, and tablets). [SP 800-46], [SP 800-77], and [SP 800-113] provide guidance on secure remote access and virtual private networks. link 36
NIST_SP_800-171_R2_3 .1.13 NIST_SP_800-171_R2_3.1.13 NIST SP 800-171 R2 3.1.13 Access Control Employ cryptographic mechanisms to protect the confidentiality of remote access sessions. Shared Microsoft and the customer share responsibilities for implementing this requirement. Cryptographic standards include FIPS-validated cryptography and NSA-approved cryptography. See [NIST CRYPTO]; [NIST CAVP]; [NIST CMVP]; National Security Agency Cryptographic Standards. link 31
NIST_SP_800-171_R2_3 .1.14 NIST_SP_800-171_R2_3.1.14 NIST SP 800-171 R2 3.1.14 Access Control Route remote access via managed access control points. Shared The customer is responsible for implementing this requirement. Routing remote access through managed access control points enhances explicit, organizational control over such connections, reducing the susceptibility to unauthorized access to organizational systems resulting in the unauthorized disclosure of CUI. link 30
NIST_SP_800-171_R3_3 .13.1 NIST_SP_800-171_R3_3.13.1 NIST 800-171 R3 3.13.1 System and Communications Protection Control Boundary Protection Shared Managed interfaces include gateways, routers, firewalls, network-based malicious code analysis, virtualization systems, and encrypted tunnels implemented within a security architecture. Subnetworks that are either physically or logically separated from internal networks are referred to as demilitarized zones or DMZs. Restricting or prohibiting interfaces within organizational systems includes restricting external web traffic to designated web servers within managed interfaces, prohibiting external traffic that appears to be spoofing internal addresses, and prohibiting internal traffic that appears to be spoofing external addresses. a. Monitor and control communications at the external managed interfaces to the system and at key internal managed interfaces within the system. b. Implement subnetworks for publicly accessible system components that are physically or logically separated from internal networks. c. Connect to external systems only through managed interfaces consisting of boundary protection devices arranged in accordance with an organizational security architecture. 43
NIST_SP_800-53_R4 AC-17 NIST_SP_800-53_R4_AC-17 NIST SP 800-53 Rev. 4 AC-17 Access Control Remote Access Shared n/a The organization: a. Establishes and documents usage restrictions, configuration/connection requirements, and implementation guidance for each type of remote access allowed; and b. Authorizes remote access to the information system prior to allowing such connections. Supplemental Guidance: Remote access is access to organizational information systems by users (or processes acting on behalf of users) communicating through external networks (e.g., the Internet). Remote access methods include, for example, dial-up, broadband, and wireless. Organizations often employ encrypted virtual private networks (VPNs) to enhance confidentiality and integrity over remote connections. The use of encrypted VPNs does not make the access non-remote; however, the use of VPNs, when adequately provisioned with appropriate security controls (e.g., employing appropriate encryption techniques for confidentiality and integrity protection) may provide sufficient assurance to the organization that it can effectively treat such connections as internal networks. Still, VPN connections traverse external networks, and the encrypted VPN does not enhance the availability of remote connections. Also, VPNs with encrypted tunnels can affect the organizational capability to adequately monitor network communications traffic for malicious code. Remote access controls apply to information systems other than public web servers or systems designed for public access. This control addresses authorization prior to allowing remote access without specifying the formats for such authorization. While organizations may use interconnection security agreements to authorize remote access connections, such agreements are not required by this control. Enforcing access restrictions for remote connections is addressed in AC-3. Related controls: AC-2, AC-3, AC-18, AC-19, AC-20, CA-3, CA-7, CM-8, IA-2, IA-3, IA-8, MA-4, PE-17, PL-4, SC-10, SI-4. References: NIST Special Publications 800-46, 800-77, 800-113, 800-114, 800-121. link 41
NIST_SP_800-53_R4 AC-17(1) NIST_SP_800-53_R4_AC-17(1) NIST SP 800-53 Rev. 4 AC-17 (1) Access Control Automated Monitoring / Control Shared n/a The information system monitors and controls remote access methods. Supplemental Guidance: Automated monitoring and control of remote access sessions allows organizations to detect cyber attacks and also ensure ongoing compliance with remote access policies by auditing connection activities of remote users on a variety of information system components (e.g., servers, workstations, notebook computers, smart phones, and tablets). Related controls: AU-2, AU-12. link 37
NIST_SP_800-53_R5.1.1 SC.7 NIST_SP_800-53_R5.1.1_SC.7 NIST SP 800-53 R5.1.1 SC.7 System and Communications Protection Boundary Protection Shared a. Monitor and control communications at the external managed interfaces to the system and at key internal managed interfaces within the system; b. Implement subnetworks for publicly accessible system components that are [Selection: physically; logically] separated from internal organizational networks; and c. Connect to external networks or systems only through managed interfaces consisting of boundary protection devices arranged in accordance with an organizational security and privacy architecture. Managed interfaces include gateways, routers, firewalls, guards, network-based malicious code analysis, virtualization systems, or encrypted tunnels implemented within a security architecture. Subnetworks that are physically or logically separated from internal networks are referred to as demilitarized zones or DMZs. Restricting or prohibiting interfaces within organizational systems includes restricting external web traffic to designated web servers within managed interfaces, prohibiting external traffic that appears to be spoofing internal addresses, and prohibiting internal traffic that appears to be spoofing external addresses. Commercial telecommunications services are provided by network components and consolidated management systems shared by customers. These services may also include third party-provided access lines and other service elements. Such services may represent sources of increased risk despite contract security provisions. Boundary protection may be implemented as a common control for all or part of an organizational network such that the boundary to be protected is greater than a system-specific boundary (i.e., an authorization boundary). 43
NIST_SP_800-53_R5 AC-17 NIST_SP_800-53_R5_AC-17 NIST SP 800-53 Rev. 5 AC-17 Access Control Remote Access Shared n/a a. Establish and document usage restrictions, configuration/connection requirements, and implementation guidance for each type of remote access allowed; and b. Authorize each type of remote access to the system prior to allowing such connections. link 41
NIST_SP_800-53_R5 AC-17(1) NIST_SP_800-53_R5_AC-17(1) NIST SP 800-53 Rev. 5 AC-17 (1) Access Control Monitoring and Control Shared n/a Employ automated mechanisms to monitor and control remote access methods. link 37
NZ_ISM_v3.5 INF-9 NZ_ISM_v3.5_INF-9 NZISM Security Benchmark INF-9 Infrastructure 10.8.35 Security Architecture Customer n/a It is important that the principles of separation and segregation as well as the system classification are incorporated into the overall security architecture to maximise design and operational efficiency and to provide and support essential security to the network design. link 17
NZISM_Security_Benchmark_v1.1 INF-9 NZISM_Security_Benchmark_v1.1_INF-9 NZISM Security Benchmark INF-9 Infrastructure 10.8.35 Security Architecture Customer Security architectures MUST apply the principles of separation and segregation. It is important that the principles of separation and segregation as well as the system classification are incorporated into the overall security architecture to maximise design and operational efficiency and to provide and support essential security to the network design. link 16
NZISM_v3.7 14.3.10.C.01. NZISM_v3.7_14.3.10.C.01. NZISM v3.7 14.3.10.C.01. Web Applications 14.3.10.C.01. - maintain control over network traffic and reduces the likelihood of exposure to malicious content or activities. Shared n/a Agencies SHOULD implement allow listing for all HTTP traffic being communicated through their gateways. 24
NZISM_v3.7 14.3.10.C.02. NZISM_v3.7_14.3.10.C.02. NZISM v3.7 14.3.10.C.02. Web Applications 14.3.10.C.02. - maintain control over network traffic and reduces the likelihood of exposure to malicious content or activities. Shared n/a Agencies using an allow list on their gateways to specify the external addresses, to which encrypted connections are permitted, SHOULD specify allow list addresses by domain name or IP address. 23
NZISM_v3.7 14.3.10.C.03. NZISM_v3.7_14.3.10.C.03. NZISM v3.7 14.3.10.C.03. Web Applications 14.3.10.C.03. - maintain control over network traffic and reduces the likelihood of exposure to malicious content or activities. Shared n/a If agencies do not allow list websites they SHOULD deny list websites to prevent access to known malicious websites. 22
NZISM_v3.7 14.3.10.C.04. NZISM_v3.7_14.3.10.C.04. NZISM v3.7 14.3.10.C.04. Web Applications 14.3.10.C.04. - maintain control over network traffic and reduces the likelihood of exposure to malicious content or activities. Shared n/a Agencies deny listing websites SHOULD update the deny list on a frequent basis to ensure that it remains effective. 22
NZISM_v3.7 17.8.10.C.02. NZISM_v3.7_17.8.10.C.02. NZISM v3.7 17.8.10.C.02. Internet Protocol Security (IPSec) 17.8.10.C.02. - enhance overall cybersecurity posture. Shared n/a Agencies choosing to use transport mode SHOULD additionally use an IP tunnel for IPSec connections. 35
NZISM_v3.7 19.1.10.C.01. NZISM_v3.7_19.1.10.C.01. NZISM v3.7 19.1.10.C.01. Gateways 19.1.10.C.01. - ensure that the security requirements are consistently upheld throughout the network hierarchy, from the lowest to the highest networks. Shared n/a When agencies have cascaded connections between networks involving multiple gateways they MUST ensure that the assurance levels specified for network devices between the overall lowest and highest networks are met by the gateway between the highest network and the next highest network within the cascaded connection. 50
NZISM_v3.7 19.1.11.C.01. NZISM_v3.7_19.1.11.C.01. NZISM v3.7 19.1.11.C.01. Gateways 19.1.11.C.01. - ensure network protection through gateway mechanisms. Shared n/a Agencies MUST ensure that: 1. all agency networks are protected from networks in other security domains by one or more gateways; 2. all gateways contain mechanisms to filter or limit data flow at the network and content level to only the information necessary for business purposes; and 3. all gateway components, discrete and virtual, are physically located within an appropriately secured server room. 49
NZISM_v3.7 19.1.11.C.02. NZISM_v3.7_19.1.11.C.02. NZISM v3.7 19.1.11.C.02. Gateways 19.1.11.C.02. - maintain security and integrity across domains. Shared n/a For gateways between networks in different security domains, any shared components MUST be managed by the system owners of the highest security domain or by a mutually agreed party. 48
NZISM_v3.7 19.1.12.C.01. NZISM_v3.7_19.1.12.C.01. NZISM v3.7 19.1.12.C.01. Gateways 19.1.12.C.01. - minimize security risks and ensure effective control over network communications Shared n/a Agencies MUST ensure that gateways: 1. are the only communications paths into and out of internal networks; 2. by default, deny all connections into and out of the network; 3. allow only explicitly authorised connections; 4. are managed via a secure path isolated from all connected networks (i.e. physically at the gateway or on a dedicated administration network); 5. provide sufficient logging and audit capabilities to detect information security incidents, attempted intrusions or anomalous usage patterns; and 6. provide real-time alerts. 47
NZISM_v3.7 19.1.14.C.01. NZISM_v3.7_19.1.14.C.01. NZISM v3.7 19.1.14.C.01. Gateways 19.1.14.C.01. - enhance security by segregating resources from the internal network. Shared n/a Agencies MUST use demilitarised zones to house systems and information directly accessed externally. 40
NZISM_v3.7 19.1.14.C.02. NZISM_v3.7_19.1.14.C.02. NZISM v3.7 19.1.14.C.02. Gateways 19.1.14.C.02. - enhance security by segregating resources from the internal network. Shared n/a Agencies SHOULD use demilitarised zones to house systems and information directly accessed externally. 39
NZISM_v3.7 19.1.19.C.01. NZISM_v3.7_19.1.19.C.01. NZISM v3.7 19.1.19.C.01. Gateways 19.1.19.C.01. - enhance security posture. Shared n/a Agencies MUST limit access to gateway administration functions. 34
NZISM_v3.7 19.2.16.C.02. NZISM_v3.7_19.2.16.C.02. NZISM v3.7 19.2.16.C.02. Cross Domain Solutions (CDS) 19.2.16.C.02. - maintain security and prevent unauthorized access or disclosure of sensitive information. Shared n/a Agencies MUST NOT implement a gateway permitting data to flow directly from: 1. a TOP SECRET network to any network below SECRET; 2. a SECRET network to an UNCLASSIFIED network; or 3. a CONFIDENTIAL network to an UNCLASSIFIED network. 34
NZISM_v3.7 19.2.18.C.01. NZISM_v3.7_19.2.18.C.01. NZISM v3.7 19.2.18.C.01. Cross Domain Solutions (CDS) 19.2.18.C.01. - enhance data security and prevent unauthorized access or leakage between classified networks and less classified networks. Shared n/a Agencies MUST ensure that all bi-directional gateways between TOP SECRET and SECRET networks, SECRET and less classified networks, and CONFIDENTIAL and less classified networks, have separate upward and downward paths which use a diode and physically separate infrastructure for each path. 34
NZISM_v3.7 19.2.19.C.01. NZISM_v3.7_19.2.19.C.01. NZISM v3.7 19.2.19.C.01. Cross Domain Solutions (CDS) 19.2.19.C.01. - ensure the integrity and reliability of information accessed or received. Shared n/a Trusted sources MUST be: 1. a strictly limited list derived from business requirements and the result of a security risk assessment; 2. where necessary an appropriate security clearance is held; and 3. approved by the Accreditation Authority. 34
NZISM_v3.7 19.2.19.C.02. NZISM_v3.7_19.2.19.C.02. NZISM v3.7 19.2.19.C.02. Cross Domain Solutions (CDS) 19.2.19.C.02. - reduce the risk of unauthorized data transfers and potential breaches. Shared n/a Trusted sources MUST authorise all data to be exported from a security domain. 29
PCI_DSS_v4.0.1 1.4.4 PCI_DSS_v4.0.1_1.4.4 PCI DSS v4.0.1 1.4.4 Install and Maintain Network Security Controls System components that store cardholder data are not directly accessible from untrusted networks Shared n/a Examine the data-flow diagram and network diagram to verify that it is documented that system components storing cardholder data are not directly accessible from the untrusted networks. Examine configurations of NSCs to verify that controls are implemented such that system components storing cardholder data are not directly accessible from untrusted networks 43
RBI_CSF_Banks_v2016 14.1 RBI_CSF_Banks_v2016_14.1 Anti-Phishing Anti-Phishing-14.1 n/a Subscribe to Anti-phishing/anti-rouge app services from external service providers for identifying and taking down phishing websites/rouge applications. 28
RBI_CSF_Banks_v2016 7.7 RBI_CSF_Banks_v2016_7.7 Patch/Vulnerability & Change Management Patch/Vulnerability & Change Management-7.7 n/a Periodically evaluate the access device configurations and patch levels to ensure that all access points, nodes between (i) different VLANs in the Data Centre (ii) LAN/WAN interfaces (iii) bank???s network to external network and interconnections with partner, vendor and service provider networks are to be securely configured. 25
SOC_2023 CC2.3 SOC_2023_CC2.3 SOC 2023 CC2.3 Information and Communication Facilitate effective internal communication. Shared n/a Entity to communicate with external parties regarding matters affecting the functioning of internal control. 218
SOC_2023 CC5.3 SOC_2023_CC5.3 SOC 2023 CC5.3 Control Activities Maintain alignment with organizational objectives and regulatory requirements. Shared n/a Entity deploys control activities through policies that establish what is expected and in procedures that put policies into action by establishing Policies and Procedures to Support Deployment of Management’s Directives, Responsibility and Accountability for Executing Policies and Procedures, perform tasks in a timely manner, taking corrective actions, perform using competent personnel and reassess policies and procedures. 229
SOC_2023 CC7.4 SOC_2023_CC7.4 SOC 2023 CC7.4 Systems Operations Effectively manage security incidents, minimize their impact, and protect assets, operations, and reputation. Shared n/a The entity responds to identified security incidents by: a. Executing a defined incident-response program to understand, contain, remediate, and communicate security incidents by assigning roles and responsibilities; b. Establishing procedures to contain security incidents; c. Mitigating ongoing security incidents, End Threats Posed by Security Incidents; d. Restoring operations; e. Developing and Implementing Communication Protocols for Security Incidents; f. Obtains Understanding of Nature of Incident and Determines Containment Strategy; g. Remediation Identified Vulnerabilities; h. Communicating Remediation Activities; and, i. Evaluating the Effectiveness of Incident Response and periodic incident evaluations. 213
SWIFT_CSCF_2024 1.1 SWIFT_CSCF_2024_1.1 SWIFT Customer Security Controls Framework 2024 1.1 Physical and Environmental Security Swift Environment Protection Shared 1. Segmentation between the user's Swift infrastructure and the larger enterprise network reduces the attack surface and has shown to be an effective way to defend against cyber-attacks that commonly involve a compromise of the general enterprise IT environment. 2. Effective segmentation includes network-level separation, access restrictions, and connectivity restrictions. To ensure the protection of the user’s Swift infrastructure from potentially compromised elements of the general IT environment and external environment. 69
SWIFT_CSCF_2024 1.5 SWIFT_CSCF_2024_1.5 SWIFT Customer Security Controls Framework 2024 1.5 Physical and Environmental Security Customer Environment Protection Shared 1. Segmentation between the customer’s connectivity infrastructure and its larger enterprise network reduces the attack surface and has shown to be an effective way to defend against cyber-attacks that commonly involve compromise of the general enterprise IT environment. 2. Effective segmentation will include network-level separation, access restrictions, and connectivity restrictions. To ensure the protection of the customer’s connectivity infrastructure from external environment and potentially compromised elements of the general IT environment. 57
SWIFT_CSCF_2024 9.1 SWIFT_CSCF_2024_9.1 404 not found n/a n/a 57
Initiatives usage
Initiative DisplayName Initiative Id Initiative Category State Type polSet in AzUSGov
[Deprecated]: Azure Security Benchmark v2 bb522ac1-bc39-4957-b194-429bcd3bcb0b Regulatory Compliance Deprecated BuiltIn true
[Deprecated]: New Zealand ISM Restricted d1a462af-7e6d-4901-98ac-61570b4ed22a Regulatory Compliance Deprecated BuiltIn unknown
[Deprecated]: New Zealand ISM Restricted v3.5 93d2179e-3068-c82f-2428-d614ae836a04 Regulatory Compliance Deprecated BuiltIn unknown
[Preview]: CMMC 2.0 Level 2 4e50fd13-098b-3206-61d6-d1d78205cb45 Regulatory Compliance Preview BuiltIn true
[Preview]: Reserve Bank of India - IT Framework for Banks d0d5578d-cc08-2b22-31e3-f525374f235a Regulatory Compliance Preview BuiltIn unknown
Canada Federal PBMM 3-1-2020 f8f5293d-df94-484a-a3e7-6b422a999d91 Regulatory Compliance GA BuiltIn unknown
CSA CSA Cloud Controls Matrix v4.0.12 8791506a-dec4-497a-a83f-3abfde37c400 Regulatory Compliance GA BuiltIn unknown
Cybersecurity Maturity Model Certification (CMMC) Level 2 v1.9.0 a4087154-2edb-4329-b56a-1cc986807f3c Regulatory Compliance GA BuiltIn unknown
EU 2022/2555 (NIS2) 2022 42346945-b531-41d8-9e46-f95057672e88 Regulatory Compliance GA BuiltIn unknown
EU General Data Protection Regulation (GDPR) 2016/679 7326812a-86a4-40c8-af7c-8945de9c4913 Regulatory Compliance GA BuiltIn unknown
FBI Criminal Justice Information Services (CJIS) v5.9.5 4fcabc2a-30b2-4ba5-9fbb-b1a4e08fb721 Regulatory Compliance GA BuiltIn unknown
FedRAMP High d5264498-16f4-418a-b659-fa7ef418175f Regulatory Compliance GA BuiltIn true
FedRAMP Moderate e95f5a9f-57ad-4d03-bb0b-b1d16db93693 Regulatory Compliance GA BuiltIn true
FFIEC CAT 2017 1d5dbdd5-6f93-43ce-a939-b19df3753cf7 Regulatory Compliance GA BuiltIn unknown
HITRUST CSF v11.3 e0d47b75-5d99-442a-9d60-07f2595ab095 Regulatory Compliance GA BuiltIn unknown
Microsoft cloud security benchmark 1f3afdf9-d0c9-4c3d-847f-89da613e70a8 Security Center GA BuiltIn true
New Zealand ISM 4f5b1359-4f8e-4d7c-9733-ea47fcde891e Regulatory Compliance GA BuiltIn unknown
NIST 800-171 R3 38916c43-6876-4971-a4b1-806aa7e55ccc Regulatory Compliance GA BuiltIn unknown
NIST SP 800-171 Rev. 2 03055927-78bd-4236-86c0-f36125a10dc9 Regulatory Compliance GA BuiltIn true
NIST SP 800-53 R5.1.1 60205a79-6280-4e20-a147-e2011e09dc78 Regulatory Compliance GA BuiltIn unknown
NIST SP 800-53 Rev. 4 cf25b9c1-bd23-4eb6-bd2c-f4f3ac644a5f Regulatory Compliance GA BuiltIn true
NIST SP 800-53 Rev. 5 179d1daa-458f-4e47-8086-2a68d0d6c38f Regulatory Compliance GA BuiltIn true
NZISM v3.7 4476df0a-18ab-4bfe-b6ad-cccae1cf320f Regulatory Compliance GA BuiltIn unknown
PCI DSS v4.0.1 a06d5deb-24aa-4991-9d58-fa7563154e31 Regulatory Compliance GA BuiltIn unknown
SOC 2023 53ad89f5-8542-49e9-ba81-1cbd686e0d52 Regulatory Compliance GA BuiltIn unknown
SWIFT Customer Security Controls Framework 2024 7499005e-df5a-45d9-810f-041cf346678c Regulatory Compliance GA BuiltIn unknown
History
Date/Time (UTC ymd) (i) Change type Change detail
2023-06-26 17:52:13 change Minor (1.1.0 > 1.2.0)
2021-12-06 22:17:57 change Minor (1.0.0 > 1.1.0)
2020-08-19 13:49:29 add af35e2a4-ef96-44e7-a9ae-853dd97032c4
JSON compare
compare mode: version left: version right:
JSON
api-version=2021-06-01
EPAC