last sync: 2025-Apr-29 17:16:02 UTC

All network ports should be restricted on network security groups associated to your virtual machine

Azure BuiltIn Policy definition

Source Azure Portal
Display name All network ports should be restricted on network security groups associated to your virtual machine
Id 9daedab3-fb2d-461e-b861-71790eead4f6
Version 3.0.0
Details on versioning
Versioning Versions supported for Versioning: 1
3.0.0
Built-in Versioning [Preview]
Category Security Center
Microsoft Learn
Description Azure Security Center has identified some of your network security groups' inbound rules to be too permissive. Inbound rules should not allow access from 'Any' or 'Internet' ranges. This can potentially enable attackers to target your resources.
Cloud environments AzureCloud = true
AzureUSGovernment = true
AzureChinaCloud = unknown
Available in AzUSGov The Policy is available in AzureUSGovernment cloud. Version: '3.0.0'
Repository: Azure-Policy 9daedab3-fb2d-461e-b861-71790eead4f6
Assessment(s) Assessments count: 1
Assessment Id: 3b20e985-f71f-483b-b078-f30d73936d43
DisplayName: All network ports should be restricted on network security groups associated to your virtual machine
Description: Defender for Cloud has identified some of your network security groups' inbound rules to be too permissive. Inbound rules should not allow access from 'Any' or 'Internet' ranges. This can potentially enable attackers to target your resources.
Remediation description: We recommend that you edit the inbound rules of some of your virtual machines, to restrict access to specific source ranges.
To restrict access to your virtual machines:
1. Select a VM to restrict access to.
2. In the 'Networking' blade, click the Network Security Group with overly permissive rules.
3. In the 'Network security group' blade, click on each of the rules that are overly permissive.
4. Improve the rule by applying less permissive source IP ranges.
5. Apply the suggested changes and click 'Save'.
If some or all of these virtual machines do not need to be accessed directly from the Internet, then you can also consider removing the public IP associated to them.
Categories: Networking
Severity: High
User impact: High
Implementation effort: Low
Threats: MaliciousInsider, DataSpillage, DataExfiltration
Mode All
Type BuiltIn
Preview False
Deprecated False
Effect Default
AuditIfNotExists
Allowed
AuditIfNotExists, Disabled
RBAC role(s) none
Rule aliases THEN-ExistenceCondition (1)
Alias Namespace ResourceType Path PathIsDefault DefaultPath Modifiable
Microsoft.Security/assessments/status.code Microsoft.Security assessments properties.status.code True False
Rule resource types IF (2)
Compliance
The following 115 compliance controls are associated with this Policy definition 'All network ports should be restricted on network security groups associated to your virtual machine' (9daedab3-fb2d-461e-b861-71790eead4f6)
Control Domain Control Name MetadataId Category Title Owner Requirements Description Info Policy#
Azure_Security_Benchmark_v3.0 NS-1 Azure_Security_Benchmark_v3.0_NS-1 Microsoft cloud security benchmark NS-1 Network Security Establish network segmentation boundaries Shared **Security Principle:** Ensure that your virtual network deployment aligns to your enterprise segmentation strategy defined in the GS-2 security control. Any workload that could incur higher risk for the organization should be in isolated virtual networks. Examples of high-risk workload include: - An application storing or processing highly sensitive data. - An external network-facing application accessible by the public or users outside of your organization. - An application using insecure architecture or containing vulnerabilities that cannot be easily remediated. To enhance your enterprise segmentation strategy, restrict or monitor traffic between internal resources using network controls. For specific, well-defined applications (such as a 3-tier app), this can be a highly secure "deny by default, permit by exception" approach by restricting the ports, protocols, source, and destination IPs of the network traffic. If you have many applications and endpoints interacting with each other, blocking traffic may not scale well, and you may only be able to monitor traffic. **Azure Guidance:** Create a virtual network (VNet) as a fundamental segmentation approach in your Azure network, so resources such as VMs can be deployed into the VNet within a network boundary. To further segment the network, you can create subnets inside VNet for smaller sub-networks. Use network security groups (NSG) as a network layer control to restrict or monitor traffic by port, protocol, source IP address, or destination IP address. You can also use application security groups (ASGs) to simplify complex configuration. Instead of defining policy based on explicit IP addresses in network security groups, ASGs enable you to configure network security as a natural extension of an application's structure, allowing you to group virtual machines and define network security policies based on those groups. **Implementation and additional context:** Azure Virtual Network concepts and best practices: https://docs.microsoft.com/azure/virtual-network/concepts-and-best-practices Add, change, or delete a virtual network subnet: https://docs.microsoft.com/azure/virtual-network/virtual-network-manage-subnet How to create a network security group with security rules: https://docs.microsoft.com/azure/virtual-network/tutorial-filter-network-traffic Understand and use application security groups: https://docs.microsoft.com/azure/virtual-network/network-security-groups-overview#application-security-groups n/a link 4
Canada_Federal_PBMM_3-1-2020 AC_14 Canada_Federal_PBMM_3-1-2020_AC_14 Canada Federal PBMM 3-1-2020 AC 14 Permitted Actions Without Identification or Authentication Permitted Actions without Identification or Authentication Shared 1. The organization identifies user actions that can be performed on the information system without identification or authentication consistent with organizational missions/business functions. 2. The organization documents and provides supporting rationale in the security plan for the information system, user actions not requiring identification or authentication. To ensure transparency and accountability in the system's security measures. 19
Canada_Federal_PBMM_3-1-2020 AC_3 Canada_Federal_PBMM_3-1-2020_AC_3 Canada Federal PBMM 3-1-2020 AC 3 Access Enforcement Access Enforcement Shared The information system enforces approved authorizations for logical access to information and system resources in accordance with applicable access control policies. To mitigate the risk of unauthorized access. 33
Canada_Federal_PBMM_3-1-2020 CA_3 Canada_Federal_PBMM_3-1-2020_CA_3 Canada Federal PBMM 3-1-2020 CA 3 Information System Connections System Interconnections Shared 1. The organization authorizes connection from information system to other information system through the use of Interconnection Security Agreements. 2. The organization documents, for each interconnection, the interface characteristics, security requirements, and the nature of the information communicated. 3. The organization reviews and updates Interconnection Security Agreements annually. To establish and maintain secure connections between information systems. 76
Canada_Federal_PBMM_3-1-2020 CA_3(3) Canada_Federal_PBMM_3-1-2020_CA_3(3) Canada Federal PBMM 3-1-2020 CA 3(3) Information System Connections System Interconnections | Classified Non-National Security System Connections Shared The organization prohibits the direct connection of any internal network or system to an external network without the use of security controls approved by the information owner. To ensure the integrity and security of internal systems against external threats. 76
Canada_Federal_PBMM_3-1-2020 CA_3(5) Canada_Federal_PBMM_3-1-2020_CA_3(5) Canada Federal PBMM 3-1-2020 CA 3(5) Information System Connections System Interconnections | Restrictions on External Network Connections Shared The organization employs allow-all, deny-by-exception; deny-all policy for allowing any systems to connect to external information systems. To enhance security posture against unauthorized access. 76
Canada_Federal_PBMM_3-1-2020 IA_1 Canada_Federal_PBMM_3-1-2020_IA_1 Canada Federal PBMM 3-1-2020 IA 1 Identification and Authentication Policy and Procedures Identification and Authentication Policy and Procedures Shared 1. The organization Develops, documents, and disseminates to all personnel: a. An identification and authentication policy that addresses purpose, scope, roles, responsibilities, management commitment, coordination among organizational entities, and compliance; and b. Procedures to facilitate the implementation of the identification and authentication policy and associated identification and authentication controls. 2. The organization Reviews and updates the current: a. Identification and authentication policy at least every 3 years; and b. Identification and authentication procedures at least annually. To ensure secure access control and compliance with established standards. 19
Canada_Federal_PBMM_3-1-2020 IA_2 Canada_Federal_PBMM_3-1-2020_IA_2 Canada Federal PBMM 3-1-2020 IA 2 Identification and Authentication (Organizational Users) Identification and Authentication (Organizational Users) Shared The information system uniquely identifies and authenticates organizational users (or processes acting on behalf of organizational users). To prevent unauthorized access and maintain system security. 19
Canada_Federal_PBMM_3-1-2020 IA_4(2) Canada_Federal_PBMM_3-1-2020_IA_4(2) Canada Federal PBMM 3-1-2020 IA 4(2) Identifier Management Identifier Management | Supervisor Authorization Shared The organization requires that the registration process to receive an individual identifier includes supervisor authorization. To ensure accountability and authorization by requiring supervisor approval during the registration process for individual identifiers. 18
Canada_Federal_PBMM_3-1-2020 IA_4(3) Canada_Federal_PBMM_3-1-2020_IA_4(3) Canada Federal PBMM 3-1-2020 IA 4(3) Identifier Management Identifier Management | Multiple Forms of Certification Shared The organization requires multiple forms of certification of individual identification such as documentary evidence or a combination of documents and biometrics be presented to the registration authority. To enhance the reliability and accuracy of individual identification. 18
Canada_Federal_PBMM_3-1-2020 IA_8 Canada_Federal_PBMM_3-1-2020_IA_8 Canada Federal PBMM 3-1-2020 IA 8 Identification and Authentication (Non-Organizational Users) Identification and Authentication (Non-Organizational Users) Shared The information system uniquely identifies and authenticates non-organizational users (or processes acting on behalf of non-organizational users). To ensure secure access and accountability. 16
CCCS SC-7 CCCS_SC-7 CCCS SC-7 System and Communications Protection Boundary Protection n/a (A) The information system monitors and controls communications at the external boundary of the system and at key internal boundaries within the system. (B) The information system implements sub-networks for publicly accessible system components that are physically or logically separated from internal organizational networks. (C) The information system connects to external networks or information systems only through managed interfaces consisting of boundary protection devices arranged in accordance with an organizational security architecture. link 2
CMMC_2.0_L2 AC.L2-3.1.3 CMMC_2.0_L2_AC.L2-3.1.3 404 not found n/a n/a 52
CMMC_2.0_L2 SC.L1-3.13.1 CMMC_2.0_L2_SC.L1-3.13.1 404 not found n/a n/a 56
CMMC_2.0_L2 SC.L1-3.13.5 CMMC_2.0_L2_SC.L1-3.13.5 404 not found n/a n/a 51
CMMC_2.0_L2 SC.L2-3.13.2 CMMC_2.0_L2_SC.L2-3.13.2 404 not found n/a n/a 51
CMMC_2.0_L2 SC.L2-3.13.6 CMMC_2.0_L2_SC.L2-3.13.6 404 not found n/a n/a 26
CMMC_L2_v1.9.0 SC.L2_3.13.6 CMMC_L2_v1.9.0_SC.L2_3.13.6 Cybersecurity Maturity Model Certification (CMMC) Level 2 v1.9.0 SC.L2 3.13.6 System and Communications Protection Network Communication by Exception Shared Deny network communications traffic by default and allow network communications traffic by exception (i.e., deny all, permit by exception). To minimise the attack surface and reduce the risk of unauthorized access or malicious activities on their networks. 4
CMMC_L3 CM.2.064 CMMC_L3_CM.2.064 CMMC L3 CM.2.064 Configuration Management Establish and enforce security configuration settings for information technology products employed in organizational systems. Shared Microsoft and the customer share responsibilities for implementing this requirement. Configuration settings are the set of parameters that can be changed in hardware, software, or firmware components of the system that affect the security posture or functionality of the system. Information technology products for which security-related configuration settings can be defined include mainframe computers, servers, workstations, input and output devices (e.g., scanners, copiers, and printers), network components (e.g., firewalls, routers, gateways, voice and data switches, wireless access points, network appliances, sensors), operating systems, middleware, and applications. Security parameters are those parameters impacting the security state of systems including the parameters required to satisfy other security requirements. Security parameters include: registry settings; account, file, directory permission settings; and settings for functions, ports, protocols, and remote connections. Organizations establish organization-wide configuration settings and subsequently derive specific configuration settings for systems. The established settings become part of the systems configuration baseline. Common secure configurations (also referred to as security configuration checklists, lockdown and hardening guides, security reference guides, security technical implementation guides) provide recognized, standardized, and established benchmarks that stipulate secure configuration settings for specific information technology platforms/products and instructions for configuring those system components to meet operational requirements. Common secure configurations can be developed by a variety of organizations including information technology product developers, manufacturers, vendors, consortia, academia, industry, federal agencies, and other organizations in the public and private sectors. link 10
CMMC_L3 CM.3.068 CMMC_L3_CM.3.068 CMMC L3 CM.3.068 Configuration Management Restrict, disable, or prevent the use of nonessential programs, functions, ports, protocols, and services. Shared Microsoft and the customer share responsibilities for implementing this requirement. Restricting the use of nonessential software (programs) includes restricting the roles allowed to approve program execution; prohibiting auto-execute; program blacklisting and whitelisting; or restricting the number of program instances executed at the same time. The organization makes a security-based determination which functions, ports, protocols, and/or services are restricted. Bluetooth, File Transfer Protocol (FTP), and peer-to-peer networking are examples of protocols organizations consider preventing the use of, restricting, or disabling. link 21
CMMC_L3 SC.1.175 CMMC_L3_SC.1.175 CMMC L3 SC.1.175 System and Communications Protection Monitor, control, and protect communications (i.e., information transmitted or received by organizational systems) at the external boundaries and key internal boundaries of organizational systems. Shared Microsoft and the customer share responsibilities for implementing this requirement. Communications can be monitored, controlled, and protected at boundary components and by restricting or prohibiting interfaces in organizational systems. Boundary components include gateways, routers, firewalls, guards, network-based malicious code analysis and virtualization systems, or encrypted tunnels implemented within a system security architecture (e.g., routers protecting firewalls or application gateways residing on protected subnetworks). Restricting or prohibiting interfaces in organizational systems includes restricting external web communications traffic to designated web servers within managed interfaces and prohibiting external traffic that appears to be spoofing internal addresses. Organizations consider the shared nature of commercial telecommunications services in the implementation of security requirements associated with the use of such services. Commercial telecommunications services are commonly based on network components and consolidated management systems shared by all attached commercial customers and may also include third party-provided access lines and other service elements. Such transmission services may represent sources of increased risk despite contract security provisions. link 30
CMMC_L3 SC.1.176 CMMC_L3_SC.1.176 CMMC L3 SC.1.176 System and Communications Protection Implement subnetworks for publicly accessible system components that are physically or logically separated from internal networks. Shared Microsoft and the customer share responsibilities for implementing this requirement. Subnetworks that are physically or logically separated from internal networks are referred to as demilitarized zones (DMZs). DMZs are typically implemented with boundary control devices and techniques that include routers, gateways, firewalls, virtualization, or cloud-based technologies. link 4
CMMC_L3 SC.3.183 CMMC_L3_SC.3.183 CMMC L3 SC.3.183 System and Communications Protection Deny network communications traffic by default and allow network communications traffic by exception (i.e., deny all, permit by exception). Shared Microsoft and the customer share responsibilities for implementing this requirement. This requirement applies to inbound and outbound network communications traffic at the system boundary and at identified points within the system. A deny-all, permit-by-exception network communications traffic policy ensures that only those connections which are essential and approved are allowed. link 30
EU_2555_(NIS2)_2022 EU_2555_(NIS2)_2022_21 EU_2555_(NIS2)_2022_21 EU 2022/2555 (NIS2) 2022 21 Cybersecurity risk-management measures Shared n/a Requires essential and important entities to take appropriate measures to manage cybersecurity risks. 193
EU_GDPR_2016_679_Art. 24 EU_GDPR_2016_679_Art._24 EU General Data Protection Regulation (GDPR) 2016/679 Art. 24 Chapter 4 - Controller and processor Responsibility of the controller Shared n/a n/a 310
EU_GDPR_2016_679_Art. 25 EU_GDPR_2016_679_Art._25 EU General Data Protection Regulation (GDPR) 2016/679 Art. 25 Chapter 4 - Controller and processor Data protection by design and by default Shared n/a n/a 310
EU_GDPR_2016_679_Art. 28 EU_GDPR_2016_679_Art._28 EU General Data Protection Regulation (GDPR) 2016/679 Art. 28 Chapter 4 - Controller and processor Processor Shared n/a n/a 310
EU_GDPR_2016_679_Art. 32 EU_GDPR_2016_679_Art._32 EU General Data Protection Regulation (GDPR) 2016/679 Art. 32 Chapter 4 - Controller and processor Security of processing Shared n/a n/a 310
FBI_Criminal_Justice_Information_Services_v5.9.5_5 .1 FBI_Criminal_Justice_Information_Services_v5.9.5_5.1 FBI Criminal Justice Information Services (CJIS) v5.9.5 5.1 Policy and Implementation - Systems And Communications Protection Systems And Communications Protection Shared In addition, applications, services, or information systems must have the capability to ensure system integrity through the detection and protection against unauthorized changes to software and information. Examples of systems and communications safeguards range from boundary and transmission protection to securing an agency's virtualized environment. 110
FedRAMP_High_R4 AC-4 FedRAMP_High_R4_AC-4 FedRAMP High AC-4 Access Control Information Flow Enforcement Shared n/a The information system enforces approved authorizations for controlling the flow of information within the system and between interconnected systems based on [Assignment: organization-defined information flow control policies]. Supplemental Guidance: Information flow control regulates where information is allowed to travel within an information system and between information systems (as opposed to who is allowed to access the information) and without explicit regard to subsequent accesses to that information. Flow control restrictions include, for example, keeping export-controlled information from being transmitted in the clear to the Internet, blocking outside traffic that claims to be from within the organization, restricting web requests to the Internet that are not from the internal web proxy server, and limiting information transfers between organizations based on data structures and content. Transferring information between information systems representing different security domains with different security policies introduces risk that such transfers violate one or more domain security policies. In such situations, information owners/stewards provide guidance at designated policy enforcement points between interconnected systems. Organizations consider mandating specific architectural solutions when required to enforce specific security policies. Enforcement includes, for example: (i) prohibiting information transfers between interconnected systems (i.e., allowing access only); (ii) employing hardware mechanisms to enforce one-way information flows; and (iii) implementing trustworthy regarding mechanisms to reassign security attributes and security labels. Organizations commonly employ information flow control policies and enforcement mechanisms to control the flow of information between designated sources and destinations (e.g., networks, individuals, and devices) within information systems and between interconnected systems. Flow control is based on the characteristics of the information and/or the information path. Enforcement occurs, for example, in boundary protection devices (e.g., gateways, routers, guards, encrypted tunnels, firewalls) that employ rule sets or establish configuration settings that restrict information system services, provide a packet-filtering capability based on header information, or message- filtering capability based on message content (e.g., implementing key word searches or using document characteristics). Organizations also consider the trustworthiness of filtering/inspection mechanisms (i.e., hardware, firmware, and software components) that are critical to information flow enforcement. Control enhancements 3 through 22 primarily address cross-domain solution needs which focus on more advanced filtering techniques, in-depth analysis, and stronger flow enforcement mechanisms implemented in cross-domain products, for example, high-assurance guards. Such capabilities are generally not available in commercial off-the-shelf information technology products. Related controls: AC-3, AC-17, AC-19, AC-21, CM-6, CM-7, SA-8, SC-2, SC-5, SC-7, SC-18. References: None. link 52
FedRAMP_High_R4 SC-7 FedRAMP_High_R4_SC-7 FedRAMP High SC-7 System And Communications Protection Boundary Protection Shared n/a The information system: a. Monitors and controls communications at the external boundary of the system and at key internal boundaries within the system; b. Implements subnetworks for publicly accessible system components that are [Selection: physically; logically] separated from internal organizational networks; and c. Connects to external networks or information systems only through managed interfaces consisting of boundary protection devices arranged in accordance with an organizational security architecture. Supplemental Guidance: Managed interfaces include, for example, gateways, routers, firewalls, guards, network-based malicious code analysis and virtualization systems, or encrypted tunnels implemented within a security architecture (e.g., routers protecting firewalls or application gateways residing on protected subnetworks). Subnetworks that are physically or logically separated from internal networks are referred to as demilitarized zones or DMZs. Restricting or prohibiting interfaces within organizational information systems includes, for example, restricting external web traffic to designated web servers within managed interfaces and prohibiting external traffic that appears to be spoofing internal addresses. Organizations consider the shared nature of commercial telecommunications services in the implementation of security controls associated with the use of such services. Commercial telecommunications services are commonly based on network components and consolidated management systems shared by all attached commercial customers, and may also include third party-provided access lines and other service elements. Such transmission services may represent sources of increased risk despite contract security provisions. Related controls: AC-4, AC-17, CA-3, CM-7, CP-8, IR-4, RA-3, SC-5, SC-13. References: FIPS Publication 199; NIST Special Publications 800-41, 800-77. link 52
FedRAMP_High_R4 SC-7(3) FedRAMP_High_R4_SC-7(3) FedRAMP High SC-7 (3) System And Communications Protection Access Points Shared n/a The organization limits the number of external network connections to the information system. Supplemental Guidance: Limiting the number of external network connections facilitates more comprehensive monitoring of inbound and outbound communications traffic. The Trusted Internet Connection (TIC) initiative is an example of limiting the number of external network connections. link 51
FedRAMP_Moderate_R4 AC-4 FedRAMP_Moderate_R4_AC-4 FedRAMP Moderate AC-4 Access Control Information Flow Enforcement Shared n/a The information system enforces approved authorizations for controlling the flow of information within the system and between interconnected systems based on [Assignment: organization-defined information flow control policies]. Supplemental Guidance: Information flow control regulates where information is allowed to travel within an information system and between information systems (as opposed to who is allowed to access the information) and without explicit regard to subsequent accesses to that information. Flow control restrictions include, for example, keeping export-controlled information from being transmitted in the clear to the Internet, blocking outside traffic that claims to be from within the organization, restricting web requests to the Internet that are not from the internal web proxy server, and limiting information transfers between organizations based on data structures and content. Transferring information between information systems representing different security domains with different security policies introduces risk that such transfers violate one or more domain security policies. In such situations, information owners/stewards provide guidance at designated policy enforcement points between interconnected systems. Organizations consider mandating specific architectural solutions when required to enforce specific security policies. Enforcement includes, for example: (i) prohibiting information transfers between interconnected systems (i.e., allowing access only); (ii) employing hardware mechanisms to enforce one-way information flows; and (iii) implementing trustworthy regarding mechanisms to reassign security attributes and security labels. Organizations commonly employ information flow control policies and enforcement mechanisms to control the flow of information between designated sources and destinations (e.g., networks, individuals, and devices) within information systems and between interconnected systems. Flow control is based on the characteristics of the information and/or the information path. Enforcement occurs, for example, in boundary protection devices (e.g., gateways, routers, guards, encrypted tunnels, firewalls) that employ rule sets or establish configuration settings that restrict information system services, provide a packet-filtering capability based on header information, or message- filtering capability based on message content (e.g., implementing key word searches or using document characteristics). Organizations also consider the trustworthiness of filtering/inspection mechanisms (i.e., hardware, firmware, and software components) that are critical to information flow enforcement. Control enhancements 3 through 22 primarily address cross-domain solution needs which focus on more advanced filtering techniques, in-depth analysis, and stronger flow enforcement mechanisms implemented in cross-domain products, for example, high-assurance guards. Such capabilities are generally not available in commercial off-the-shelf information technology products. Related controls: AC-3, AC-17, AC-19, AC-21, CM-6, CM-7, SA-8, SC-2, SC-5, SC-7, SC-18. References: None. link 52
FedRAMP_Moderate_R4 SC-7 FedRAMP_Moderate_R4_SC-7 FedRAMP Moderate SC-7 System And Communications Protection Boundary Protection Shared n/a The information system: a. Monitors and controls communications at the external boundary of the system and at key internal boundaries within the system; b. Implements subnetworks for publicly accessible system components that are [Selection: physically; logically] separated from internal organizational networks; and c. Connects to external networks or information systems only through managed interfaces consisting of boundary protection devices arranged in accordance with an organizational security architecture. Supplemental Guidance: Managed interfaces include, for example, gateways, routers, firewalls, guards, network-based malicious code analysis and virtualization systems, or encrypted tunnels implemented within a security architecture (e.g., routers protecting firewalls or application gateways residing on protected subnetworks). Subnetworks that are physically or logically separated from internal networks are referred to as demilitarized zones or DMZs. Restricting or prohibiting interfaces within organizational information systems includes, for example, restricting external web traffic to designated web servers within managed interfaces and prohibiting external traffic that appears to be spoofing internal addresses. Organizations consider the shared nature of commercial telecommunications services in the implementation of security controls associated with the use of such services. Commercial telecommunications services are commonly based on network components and consolidated management systems shared by all attached commercial customers, and may also include third party-provided access lines and other service elements. Such transmission services may represent sources of increased risk despite contract security provisions. Related controls: AC-4, AC-17, CA-3, CM-7, CP-8, IR-4, RA-3, SC-5, SC-13. References: FIPS Publication 199; NIST Special Publications 800-41, 800-77. link 52
FedRAMP_Moderate_R4 SC-7(3) FedRAMP_Moderate_R4_SC-7(3) FedRAMP Moderate SC-7 (3) System And Communications Protection Access Points Shared n/a The organization limits the number of external network connections to the information system. Supplemental Guidance: Limiting the number of external network connections facilitates more comprehensive monitoring of inbound and outbound communications traffic. The Trusted Internet Connection (TIC) initiative is an example of limiting the number of external network connections. link 51
hipaa 0858.09m1Organizational.4-09.m hipaa-0858.09m1Organizational.4-09.m 0858.09m1Organizational.4-09.m 08 Network Protection 0858.09m1Organizational.4-09.m 09.06 Network Security Management Shared n/a The organization monitors for all authorized and unauthorized wireless access to the information system and prohibits installation of wireless access points (WAPs) unless explicitly authorized in writing by the CIO or his/her designated representative. 7
HITRUST_CSF_v11.3 01.n HITRUST_CSF_v11.3_01.n HITRUST CSF v11.3 01.n Network Access Control Prevent unauthorised access to shared networks. Shared Default deny policy at managed interfaces, restricted user connections through network gateways, comprehensive access controls, time-based restrictions, and encryption of sensitive information transmitted over public networks for is to be implemented for enhanced security. For shared networks, especially those extending across the organization’s boundaries, the capability of users to connect to the network shall be restricted, in line with the access control policy and requirements of the business applications. 55
IRS_1075_9.3 .16.5 IRS_1075_9.3.16.5 IRS 1075 9.3.16.5 System and Communications Protection Boundary Protection (SC-7) n/a The information system must: a. Monitor and control communications at the external boundary of the system and at key internal boundaries within the system b. Implement subnetworks for publicly accessible system components that are physically and logically separated from internal agency networks c. Connect to external networks or information systems only through managed interfaces consisting of boundary protection devices arranged in accordance with agency security architecture requirements Managed interfaces include, for example, gateways, routers, firewalls, guards, network-based malicious code analysis and virtualization systems, or encrypted tunnels implemented within the security architecture (e.g., routers protecting firewalls or application gateways residing on protected subnetworks). The agency must limit the number of external network connections to the information system. (CE3) The agency must: (CE4) a. Implement a secure managed interface for each external telecommunication service b. Establish a traffic flow policy for each managed interface d. Protect the confidentiality and integrity of the information being transmitted across each interface e. Document each exception to the traffic flow policy with a supporting mission/business need and duration of that need, and accept the associated risk f. Review exceptions to the traffic flow policy at a minimum annually, and remove exceptions that are no longer supported by an explicit mission/business need The information system at managed interfaces must deny network communications traffic by default and allow network communications traffic by exception (i.e., deny all, permit by exception). (CE5) The information system must, in conjunction with a remote device, prevent the device from simultaneously establishing non-remote connections with the system and communicating via some other connection to resources in external networks. (CE7) Additional requirements for protecting FTI on networks are provided in Section 9.4.10, Network Protections. link 2
ISO27001-2013 A.13.1.1 ISO27001-2013_A.13.1.1 ISO 27001:2013 A.13.1.1 Communications Security Network controls Shared n/a Networks shall be managed and controlled to protect information in systems and applications. link 40
mp.com.2 Protection of confidentiality mp.com.2 Protection of confidentiality 404 not found n/a n/a 55
mp.com.3 Protection of integrity and authenticity mp.com.3 Protection of integrity and authenticity 404 not found n/a n/a 62
mp.com.4 Separation of information flows on the network mp.com.4 Separation of information flows on the network 404 not found n/a n/a 51
New_Zealand_ISM 18.1.13.C.02 New_Zealand_ISM_18.1.13.C.02 New_Zealand_ISM_18.1.13.C.02 18. Network security 18.1.13.C.02 Limiting network access n/a Agencies SHOULD implement network access controls on all networks. 19
NIS2 PV._Posture_and_Vulnerability_Management_5 NIS2_PV._Posture_and_Vulnerability_Management_5 NIS2_PV._Posture_and_Vulnerability_Management_5 PV. Posture and Vulnerability Management Security in network and information systems acquisition, development and maintenance, including vulnerability handling and disclosure n/a missing value 47
NIST_SP_800-171_R2_3 .1.3 NIST_SP_800-171_R2_3.1.3 NIST SP 800-171 R2 3.1.3 Access Control Control the flow of CUI in accordance with approved authorizations. Shared Microsoft and the customer share responsibilities for implementing this requirement. Information flow control regulates where information can travel within a system and between systems (versus who can access the information) and without explicit regard to subsequent accesses to that information. Flow control restrictions include the following: keeping export-controlled information from being transmitted in the clear to the Internet; blocking outside traffic that claims to be from within the organization; restricting requests to the Internet that are not from the internal web proxy server; and limiting information transfers between organizations based on data structures and content. Organizations commonly use information flow control policies and enforcement mechanisms to control the flow of information between designated sources and destinations (e.g., networks, individuals, and devices) within systems and between interconnected systems. Flow control is based on characteristics of the information or the information path. Enforcement occurs in boundary protection devices (e.g., gateways, routers, guards, encrypted tunnels, firewalls) that employ rule sets or establish configuration settings that restrict system services, provide a packet-filtering capability based on header information, or message-filtering capability based on message content (e.g., implementing key word searches or using document characteristics). Organizations also consider the trustworthiness of filtering and inspection mechanisms (i.e., hardware, firmware, and software components) that are critical to information flow enforcement. Transferring information between systems representing different security domains with different security policies introduces risk that such transfers violate one or more domain security policies. In such situations, information owners or stewards provide guidance at designated policy enforcement points between interconnected systems. Organizations consider mandating specific architectural solutions when required to enforce specific security policies. Enforcement includes: prohibiting information transfers between interconnected systems (i.e., allowing access only); employing hardware mechanisms to enforce one-way information flows; and implementing trustworthy regrading mechanisms to reassign security attributes and security labels. link 56
NIST_SP_800-171_R2_3 .13.1 NIST_SP_800-171_R2_3.13.1 NIST SP 800-171 R2 3.13.1 System and Communications Protection Monitor, control, and protect communications (i.e., information transmitted or received by organizational systems) at the external boundaries and key internal boundaries of organizational systems. Shared Microsoft and the customer share responsibilities for implementing this requirement. Communications can be monitored, controlled, and protected at boundary components and by restricting or prohibiting interfaces in organizational systems. Boundary components include gateways, routers, firewalls, guards, network-based malicious code analysis and virtualization systems, or encrypted tunnels implemented within a system security architecture (e.g., routers protecting firewalls or application gateways residing on protected subnetworks). Restricting or prohibiting interfaces in organizational systems includes restricting external web communications traffic to designated web servers within managed interfaces and prohibiting external traffic that appears to be spoofing internal addresses. Organizations consider the shared nature of commercial telecommunications services in the implementation of security requirements associated with the use of such services. Commercial telecommunications services are commonly based on network components and consolidated management systems shared by all attached commercial customers and may also include third party-provided access lines and other service elements. Such transmission services may represent sources of increased risk despite contract security provisions. [SP 800-41] provides guidance on firewalls and firewall policy. [SP 800-125B] provides guidance on security for virtualization technologies. [28] There is no prescribed format or specified level of detail for system security plans. However, organizations ensure that the required information in 3.12.4 is conveyed in those plans. link 51
NIST_SP_800-171_R2_3 .13.2 NIST_SP_800-171_R2_3.13.2 NIST SP 800-171 R2 3.13.2 System and Communications Protection Employ architectural designs, software development techniques, and systems engineering principles that promote effective information security within organizational systems. Shared Microsoft and the customer share responsibilities for implementing this requirement. Organizations apply systems security engineering principles to new development systems or systems undergoing major upgrades. For legacy systems, organizations apply systems security engineering principles to system upgrades and modifications to the extent feasible, given the current state of hardware, software, and firmware components within those systems. The application of systems security engineering concepts and principles helps to develop trustworthy, secure, and resilient systems and system components and reduce the susceptibility of organizations to disruptions, hazards, and threats. Examples of these concepts and principles include developing layered protections; establishing security policies, architecture, and controls as the foundation for design; incorporating security requirements into the system development life cycle; delineating physical and logical security boundaries; ensuring that developers are trained on how to build secure software; and performing threat modeling to identify use cases, threat agents, attack vectors and patterns, design patterns, and compensating controls needed to mitigate risk. Organizations that apply security engineering concepts and principles can facilitate the development of trustworthy, secure systems, system components, and system services; reduce risk to acceptable levels; and make informed risk-management decisions. [SP 800-160-1] provides guidance on systems security engineering. link 51
NIST_SP_800-171_R2_3 .13.5 NIST_SP_800-171_R2_3.13.5 NIST SP 800-171 R2 3.13.5 System and Communications Protection Implement subnetworks for publicly accessible system components that are physically or logically separated from internal networks. Shared Microsoft and the customer share responsibilities for implementing this requirement. Subnetworks that are physically or logically separated from internal networks are referred to as demilitarized zones (DMZs). DMZs are typically implemented with boundary control devices and techniques that include routers, gateways, firewalls, virtualization, or cloud-based technologies. [SP 800-41] provides guidance on firewalls and firewall policy. [SP 800-125B] provides guidance on security for virtualization technologies link 51
NIST_SP_800-171_R2_3 .13.6 NIST_SP_800-171_R2_3.13.6 NIST SP 800-171 R2 3.13.6 System and Communications Protection Deny network communications traffic by default and allow network communications traffic by exception (i.e., deny all, permit by exception). Shared Microsoft and the customer share responsibilities for implementing this requirement. This requirement applies to inbound and outbound network communications traffic at the system boundary and at identified points within the system. A deny-all, permit-by-exception network communications traffic policy ensures that only those connections which are essential and approved are allowed. link 22
NIST_SP_800-171_R3_3 .13.6 NIST_SP_800-171_R3_3.13.6 NIST 800-171 R3 3.13.6 System and Communications Protection Control Network Communications – Deny by Default – Allow by Exception Shared This requirement applies to inbound and outbound network communications traffic at the system boundary and at identified points within the system. A deny-all, allow-by-exception network communications traffic policy ensures that only essential and approved connections are allowed. Deny network communications traffic by default and allow network communications traffic by exception. 4
NIST_SP_800-53_R4 AC-4 NIST_SP_800-53_R4_AC-4 NIST SP 800-53 Rev. 4 AC-4 Access Control Information Flow Enforcement Shared n/a The information system enforces approved authorizations for controlling the flow of information within the system and between interconnected systems based on [Assignment: organization-defined information flow control policies]. Supplemental Guidance: Information flow control regulates where information is allowed to travel within an information system and between information systems (as opposed to who is allowed to access the information) and without explicit regard to subsequent accesses to that information. Flow control restrictions include, for example, keeping export-controlled information from being transmitted in the clear to the Internet, blocking outside traffic that claims to be from within the organization, restricting web requests to the Internet that are not from the internal web proxy server, and limiting information transfers between organizations based on data structures and content. Transferring information between information systems representing different security domains with different security policies introduces risk that such transfers violate one or more domain security policies. In such situations, information owners/stewards provide guidance at designated policy enforcement points between interconnected systems. Organizations consider mandating specific architectural solutions when required to enforce specific security policies. Enforcement includes, for example: (i) prohibiting information transfers between interconnected systems (i.e., allowing access only); (ii) employing hardware mechanisms to enforce one-way information flows; and (iii) implementing trustworthy regarding mechanisms to reassign security attributes and security labels. Organizations commonly employ information flow control policies and enforcement mechanisms to control the flow of information between designated sources and destinations (e.g., networks, individuals, and devices) within information systems and between interconnected systems. Flow control is based on the characteristics of the information and/or the information path. Enforcement occurs, for example, in boundary protection devices (e.g., gateways, routers, guards, encrypted tunnels, firewalls) that employ rule sets or establish configuration settings that restrict information system services, provide a packet-filtering capability based on header information, or message- filtering capability based on message content (e.g., implementing key word searches or using document characteristics). Organizations also consider the trustworthiness of filtering/inspection mechanisms (i.e., hardware, firmware, and software components) that are critical to information flow enforcement. Control enhancements 3 through 22 primarily address cross-domain solution needs which focus on more advanced filtering techniques, in-depth analysis, and stronger flow enforcement mechanisms implemented in cross-domain products, for example, high-assurance guards. Such capabilities are generally not available in commercial off-the-shelf information technology products. Related controls: AC-3, AC-17, AC-19, AC-21, CM-6, CM-7, SA-8, SC-2, SC-5, SC-7, SC-18. References: None. link 52
NIST_SP_800-53_R4 SC-7 NIST_SP_800-53_R4_SC-7 NIST SP 800-53 Rev. 4 SC-7 System And Communications Protection Boundary Protection Shared n/a The information system: a. Monitors and controls communications at the external boundary of the system and at key internal boundaries within the system; b. Implements subnetworks for publicly accessible system components that are [Selection: physically; logically] separated from internal organizational networks; and c. Connects to external networks or information systems only through managed interfaces consisting of boundary protection devices arranged in accordance with an organizational security architecture. Supplemental Guidance: Managed interfaces include, for example, gateways, routers, firewalls, guards, network-based malicious code analysis and virtualization systems, or encrypted tunnels implemented within a security architecture (e.g., routers protecting firewalls or application gateways residing on protected subnetworks). Subnetworks that are physically or logically separated from internal networks are referred to as demilitarized zones or DMZs. Restricting or prohibiting interfaces within organizational information systems includes, for example, restricting external web traffic to designated web servers within managed interfaces and prohibiting external traffic that appears to be spoofing internal addresses. Organizations consider the shared nature of commercial telecommunications services in the implementation of security controls associated with the use of such services. Commercial telecommunications services are commonly based on network components and consolidated management systems shared by all attached commercial customers, and may also include third party-provided access lines and other service elements. Such transmission services may represent sources of increased risk despite contract security provisions. Related controls: AC-4, AC-17, CA-3, CM-7, CP-8, IR-4, RA-3, SC-5, SC-13. References: FIPS Publication 199; NIST Special Publications 800-41, 800-77. link 52
NIST_SP_800-53_R4 SC-7(3) NIST_SP_800-53_R4_SC-7(3) NIST SP 800-53 Rev. 4 SC-7 (3) System And Communications Protection Access Points Shared n/a The organization limits the number of external network connections to the information system. Supplemental Guidance: Limiting the number of external network connections facilitates more comprehensive monitoring of inbound and outbound communications traffic. The Trusted Internet Connection (TIC) initiative is an example of limiting the number of external network connections. link 51
NIST_SP_800-53_R5.1.1 SC.7.5 NIST_SP_800-53_R5.1.1_SC.7.5 NIST SP 800-53 R5.1.1 SC.7.5 System and Communications Protection Boundary Protection | Deny by Default — Allow by Exception Shared Deny network communications traffic by default and allow network communications traffic by exception [Selection (one or more): at managed interfaces; for [Assignment: organization-defined systems] ]. Denying by default and allowing by exception applies to inbound and outbound network communications traffic. A deny-all, permit-by-exception network communications traffic policy ensures that only those system connections that are essential and approved are allowed. Deny by default, allow by exception also applies to a system that is connected to an external system. 4
NIST_SP_800-53_R5 AC-4 NIST_SP_800-53_R5_AC-4 NIST SP 800-53 Rev. 5 AC-4 Access Control Information Flow Enforcement Shared n/a Enforce approved authorizations for controlling the flow of information within the system and between connected systems based on [Assignment: organization-defined information flow control policies]. link 52
NIST_SP_800-53_R5 SC-7 NIST_SP_800-53_R5_SC-7 NIST SP 800-53 Rev. 5 SC-7 System and Communications Protection Boundary Protection Shared n/a a. Monitor and control communications at the external managed interfaces to the system and at key internal managed interfaces within the system; b. Implement subnetworks for publicly accessible system components that are [Selection: physically;logically] separated from internal organizational networks; and c. Connect to external networks or systems only through managed interfaces consisting of boundary protection devices arranged in accordance with an organizational security and privacy architecture. link 52
NIST_SP_800-53_R5 SC-7(3) NIST_SP_800-53_R5_SC-7(3) NIST SP 800-53 Rev. 5 SC-7 (3) System and Communications Protection Access Points Shared n/a Limit the number of external network connections to the system. link 51
NZ_ISM_v3.5 GS-3 NZ_ISM_v3.5_GS-3 NZISM Security Benchmark GS-3 Gateway security 19.1.12 Configuration of Gateways Customer n/a Gateways are essential in controlling the flow of information between security domains. Any failure, particularly at the higher classifications, may have serious consequences. Hence mechanisms for alerting personnel to situations that may give rise to information security incidents are especially important for gateways. link 6
NZISM_Security_Benchmark_v1.1 GS-3 NZISM_Security_Benchmark_v1.1_GS-3 NZISM Security Benchmark GS-3 Gateway security 19.1.12 Configuration of Gateways Customer Agencies MUST ensure that gateways: are the only communications paths into and out of internal networks; by default, deny all connections into and out of the network; allow only explicitly authorised connections; are managed via a secure path isolated from all connected networks (i.e. physically at the gateway or on a dedicated administration network); provide sufficient logging and audit capabilities to detect information security incidents, attempted intrusions or anomalous usage patterns; and provide real-time alerts. Gateways are essential in controlling the flow of information between security domains. Any failure, particularly at the higher classifications, may have serious consequences. Hence mechanisms for alerting personnel to situations that may give rise to information security incidents are especially important for gateways. link 6
NZISM_v3.7 19.1.10.C.01. NZISM_v3.7_19.1.10.C.01. NZISM v3.7 19.1.10.C.01. Gateways 19.1.10.C.01. - ensure that the security requirements are consistently upheld throughout the network hierarchy, from the lowest to the highest networks. Shared n/a When agencies have cascaded connections between networks involving multiple gateways they MUST ensure that the assurance levels specified for network devices between the overall lowest and highest networks are met by the gateway between the highest network and the next highest network within the cascaded connection. 50
NZISM_v3.7 19.1.11.C.01. NZISM_v3.7_19.1.11.C.01. NZISM v3.7 19.1.11.C.01. Gateways 19.1.11.C.01. - ensure network protection through gateway mechanisms. Shared n/a Agencies MUST ensure that: 1. all agency networks are protected from networks in other security domains by one or more gateways; 2. all gateways contain mechanisms to filter or limit data flow at the network and content level to only the information necessary for business purposes; and 3. all gateway components, discrete and virtual, are physically located within an appropriately secured server room. 49
NZISM_v3.7 19.1.11.C.02. NZISM_v3.7_19.1.11.C.02. NZISM v3.7 19.1.11.C.02. Gateways 19.1.11.C.02. - maintain security and integrity across domains. Shared n/a For gateways between networks in different security domains, any shared components MUST be managed by the system owners of the highest security domain or by a mutually agreed party. 48
NZISM_v3.7 19.1.12.C.01. NZISM_v3.7_19.1.12.C.01. NZISM v3.7 19.1.12.C.01. Gateways 19.1.12.C.01. - minimize security risks and ensure effective control over network communications Shared n/a Agencies MUST ensure that gateways: 1. are the only communications paths into and out of internal networks; 2. by default, deny all connections into and out of the network; 3. allow only explicitly authorised connections; 4. are managed via a secure path isolated from all connected networks (i.e. physically at the gateway or on a dedicated administration network); 5. provide sufficient logging and audit capabilities to detect information security incidents, attempted intrusions or anomalous usage patterns; and 6. provide real-time alerts. 47
NZISM_v3.7 19.1.14.C.01. NZISM_v3.7_19.1.14.C.01. NZISM v3.7 19.1.14.C.01. Gateways 19.1.14.C.01. - enhance security by segregating resources from the internal network. Shared n/a Agencies MUST use demilitarised zones to house systems and information directly accessed externally. 40
NZISM_v3.7 19.1.14.C.02. NZISM_v3.7_19.1.14.C.02. NZISM v3.7 19.1.14.C.02. Gateways 19.1.14.C.02. - enhance security by segregating resources from the internal network. Shared n/a Agencies SHOULD use demilitarised zones to house systems and information directly accessed externally. 39
NZISM_v3.7 19.1.19.C.01. NZISM_v3.7_19.1.19.C.01. NZISM v3.7 19.1.19.C.01. Gateways 19.1.19.C.01. - enhance security posture. Shared n/a Agencies MUST limit access to gateway administration functions. 34
NZISM_v3.7 19.2.16.C.02. NZISM_v3.7_19.2.16.C.02. NZISM v3.7 19.2.16.C.02. Cross Domain Solutions (CDS) 19.2.16.C.02. - maintain security and prevent unauthorized access or disclosure of sensitive information. Shared n/a Agencies MUST NOT implement a gateway permitting data to flow directly from: 1. a TOP SECRET network to any network below SECRET; 2. a SECRET network to an UNCLASSIFIED network; or 3. a CONFIDENTIAL network to an UNCLASSIFIED network. 34
NZISM_v3.7 19.2.18.C.01. NZISM_v3.7_19.2.18.C.01. NZISM v3.7 19.2.18.C.01. Cross Domain Solutions (CDS) 19.2.18.C.01. - enhance data security and prevent unauthorized access or leakage between classified networks and less classified networks. Shared n/a Agencies MUST ensure that all bi-directional gateways between TOP SECRET and SECRET networks, SECRET and less classified networks, and CONFIDENTIAL and less classified networks, have separate upward and downward paths which use a diode and physically separate infrastructure for each path. 34
NZISM_v3.7 19.2.19.C.01. NZISM_v3.7_19.2.19.C.01. NZISM v3.7 19.2.19.C.01. Cross Domain Solutions (CDS) 19.2.19.C.01. - ensure the integrity and reliability of information accessed or received. Shared n/a Trusted sources MUST be: 1. a strictly limited list derived from business requirements and the result of a security risk assessment; 2. where necessary an appropriate security clearance is held; and 3. approved by the Accreditation Authority. 34
NZISM_v3.7 19.2.19.C.02. NZISM_v3.7_19.2.19.C.02. NZISM v3.7 19.2.19.C.02. Cross Domain Solutions (CDS) 19.2.19.C.02. - reduce the risk of unauthorized data transfers and potential breaches. Shared n/a Trusted sources MUST authorise all data to be exported from a security domain. 29
NZISM_v3.7 19.3.8.C.01. NZISM_v3.7_19.3.8.C.01. NZISM v3.7 19.3.8.C.01. Firewalls 19.3.8.C.01. - enhance network security. Shared n/a All gateways MUST contain a firewall in both physical and virtual environments. 12
NZISM_v3.7 19.3.8.C.03. NZISM_v3.7_19.3.8.C.03. NZISM v3.7 19.3.8.C.03. Firewalls 19.3.8.C.03. - minimise the risk of unauthorized access or data leakage between networks Shared n/a Agencies MUST use devices as shown in the following table for their gateway when connecting two networks of different classifications or two networks of the same classification but of different security domains. Your network: Restricted and below Their network: Unclassified You require: EAL4 firewall They require: N/A Your network: Restricted and below Their network: Restricted You require: EAL2 or PP firewall They require:EAL2 or PP firewall Your network: Restricted and below Their network: Confidential You require: EAL2 or PP firewall They require:EAL4 firewall Your network: Restricted and below Their network: Secret You require: EAL2 or PP firewall They require:EAL4 firewall Your network: Restricted and below Their network: Top Secret You require: EAL2 or PP firewall They require: Consultation with GCSB Your network: Confidential Their network: Unclassified You require: Consultation with GCSB They require: N/A Your network: Confidential Their network: Restricted You require: EAL4 firewall They require: EAL2 or PP firewall Your network: Confidential Their network: Confidential You require: EAL2 or PP firewal They require: EAL2 or PP firewall Your network: Confidential Their network: Secret You require: EAL2 or PP firewal They require: EAL4 firewall Your network: Confidential Their network: Top Secret You require: EAL2 or PP firewall They require: Consultation with GCSB Your network: Secret Their network: Unclassified You require: Consultation with GCSB They require: N/A Your network: Secret Their network: Restricted You require: EAL4 firewall They require: EAL2 or PP firewall Your network: Secret Their network: Confidential You require: EAL4 firewall They require: EAL2 or PP firewall Your network: Secret Their network: Secret You require: EAL2 or PP firewall They require: EAL2 or PP firewall Your network: Secret Their network: Top Secret You require: EAL2 or PP firewall They require: EAL4 firewall Your network: Top Secret Their network: Unclassified You require: Consultation with GCSB They require: N/A Your network: Top Secret Their network: Restricted You require: Consultation with GCSB They require: EAL2 or PP firewall Your network: Top Secret Their network: Confidential You require: Consultation with GCSB They require: EAL2 or PP firewall Your network: Top Secret Their network: Secret You require: EAL4 firewall They require: EAL2 or PP firewall Your network: Top Secret Their network: Top Secret You require: EAL4 firewall They require: EAL4 firewall 19
NZISM_v3.7 19.3.8.C.04. NZISM_v3.7_19.3.8.C.04. NZISM v3.7 19.3.8.C.04. Firewalls 19.3.8.C.04. - minimise the risk of unauthorized access or data leakage between networks Shared n/a 1. The requirement to implement a firewall as part of gateway architecture MUST be met separately and independently by both parties (gateways) in both physical and virtual environments. 2. Shared equipment DOES NOT satisfy the requirements of this control. 15
NZISM_v3.7 19.3.9.C.01. NZISM_v3.7_19.3.9.C.01. NZISM v3.7 19.3.9.C.01. Firewalls 19.3.9.C.01. - minimise the risk of unauthorized access or data leakage between networks Shared n/a Agencies MUST use a firewall of at least an EAL4 assurance level between an NZEO network and a foreign network in addition to the minimum assurance levels for firewalls between networks of different classifications or security domains. 15
NZISM_v3.7 19.3.9.C.02. NZISM_v3.7_19.3.9.C.02. NZISM v3.7 19.3.9.C.02. Firewalls 19.3.9.C.02. - minimise the risk of unauthorized access or data leakage between networks Shared n/a In all other circumstances the table at 19.3.8.C.03 MUST apply. 5
op.acc.6 Authentication mechanism (organization users) op.acc.6 Authentication mechanism (organization users) 404 not found n/a n/a 75
op.exp.2 Security configuration op.exp.2 Security configuration 404 not found n/a n/a 112
op.exp.3 Security configuration management op.exp.3 Security configuration management 404 not found n/a n/a 123
op.ext.4 Interconnection of systems op.ext.4 Interconnection of systems 404 not found n/a n/a 68
op.pl.2 Security Architecture op.pl.2 Security Architecture 404 not found n/a n/a 65
org.4 Authorization process org.4 Authorization process 404 not found n/a n/a 126
PCI_DSS_V3.2.1 1.3.2 PCI_DSS_v3.2.1_1.3.2 PCI DSS v3.2.1 1.3.2 Requirement 1 PCI DSS requirement 1.3.2 customer n/a n/a link 2
PCI_DSS_V3.2.1 1.3.4 PCI_DSS_v3.2.1_1.3.4 PCI DSS v3.2.1 1.3.4 Requirement 1 PCI DSS requirement 1.3.4 customer n/a n/a link 2
PCI_DSS_v4.0.1 1.3.1 PCI_DSS_v4.0.1_1.3.1 PCI DSS v4.0.1 1.3.1 Install and Maintain Network Security Controls Inbound traffic to the CDE is restricted to only traffic that is necessary and all other traffic is specifically denied Shared n/a Examine configuration standards for NSCs to verify that they define restricting inbound traffic to the CDE is in accordance with all elements specified in this requirement. Examine configurations of NSCs to verify that inbound traffic to the CDE is restricted in accordance with all elements specified in this requirement 4
PCI_DSS_v4.0.1 1.3.2 PCI_DSS_v4.0.1_1.3.2 PCI DSS v4.0.1 1.3.2 Install and Maintain Network Security Controls Outbound traffic from the CDE is restricted to only traffic that is necessary and all other traffic is specifically denied Shared n/a Examine configuration standards for NSCs to verify that they define restricting outbound traffic from the CDE in accordance with all elements specified in this requirement. Examine configurations of NSCs to verify that outbound traffic from the CDE is restricted in accordance with all elements specified in this requirement 4
PCI_DSS_v4.0.1 1.4.2 PCI_DSS_v4.0.1_1.4.2 PCI DSS v4.0.1 1.4.2 Install and Maintain Network Security Controls Inbound traffic from untrusted networks to trusted networks is restricted to communications with system components that are authorized to provide publicly accessible services, protocols, and ports, stateful responses to communications initiated by system components in a trusted network, and all other traffic is denied Shared n/a Examine vendor documentation and configurations of NSCs to verify that inbound traffic from untrusted networks to trusted networks is restricted in accordance with all elements specified in this requirement 4
PCI_DSS_v4.0 1.3.2 PCI_DSS_v4.0_1.3.2 PCI DSS v4.0 1.3.2 Requirement 01: Install and Maintain Network Security Controls Network access to and from the cardholder data environment is restricted Shared n/a Outbound traffic from the CDE is restricted as follows: • To only traffic that is necessary. • All other traffic is specifically denied. link 2
PCI_DSS_v4.0 1.4.2 PCI_DSS_v4.0_1.4.2 PCI DSS v4.0 1.4.2 Requirement 01: Install and Maintain Network Security Controls Network connections between trusted and untrusted networks are controlled Shared n/a Inbound traffic from untrusted networks to trusted networks is restricted to: • Communications with system components that are authorized to provide publicly accessible services, protocols, and ports. • Stateful responses to communications initiated by system components in a trusted network. • All other traffic is denied. link 7
RBI_CSF_Banks_v2016 10.1 RBI_CSF_Banks_v2016_10.1 Secure Mail And Messaging Systems Secure Mail And Messaging Systems-10.1 n/a Implement secure mail and messaging systems, including those used by bank???s partners & vendors, that include measures to prevent email spoofing, identical mail domains, protection of attachments, malicious links etc 15
RBI_CSF_Banks_v2016 10.2 RBI_CSF_Banks_v2016_10.2 Secure Mail And Messaging Systems Secure Mail And Messaging Systems-10.2 n/a Document and implement emailserver specific controls 15
RBI_CSF_Banks_v2016 13.3 RBI_CSF_Banks_v2016_13.3 Advanced Real-Timethreat Defenceand Management Advanced Real-Timethreat Defenceand Management-13.3 n/a Consider implementing whitelisting of internet websites/systems. 12
RBI_CSF_Banks_v2016 13.4 RBI_CSF_Banks_v2016_13.4 Advanced Real-Timethreat Defenceand Management Advanced Real-Timethreat Defenceand Management-13.4 n/a Consider implementingsecure web gateways with capability to deep scan network packets including secure (HTTPS, etc.) traffic passing through the web/internet gateway 41
RBI_CSF_Banks_v2016 15.1 RBI_CSF_Banks_v2016_15.1 Data Leak Prevention Strategy Data Leak Prevention Strategy-15.1 n/a Develop a comprehensive data loss/leakage prevention strategy to safeguard sensitive (including confidential)business and customer data/information. 4
RBI_CSF_Banks_v2016 4.10 RBI_CSF_Banks_v2016_4.10 Network Management And Security Perimeter Protection And Detection-4.10 n/a Boundary defences should be multi-layered with properly configured firewalls, proxies, DMZ perimeter networks, and network--???based IPS and IDS. Mechanism to filter both inbound and outbound traffic to be put in place. 11
RBI_CSF_Banks_v2016 4.3 RBI_CSF_Banks_v2016_4.3 Network Management And Security Network Device Configuration Management-4.3 n/a Ensure that all the network devices are configured appropriately and periodically assess whether the configurations are appropriate to the desired level of network security. 14
RBI_CSF_Banks_v2016 4.7 RBI_CSF_Banks_v2016_4.7 Network Management And Security Anomaly Detection-4.7 n/a Put in place mechanism to detect and remedy any unusual activities in systems, servers, network devices and endpoints. 13
RBI_ITF_NBFC_v2017 5 RBI_ITF_NBFC_v2017_5 RBI IT Framework 5 IS Audit Policy for Information System Audit (IS Audit)-5 n/a The objective of the IS Audit is to provide an insight on the effectiveness of controls that are in place to ensure confidentiality, integrity and availability of the organization???s IT infrastructure. IS Audit shall identify risks and methods to mitigate risk arising out of IT infrastructure such as server architecture, local and wide area networks, physical and information security, telecommunications etc. link 14
RMiT_v1.0 10.33 RMiT_v1.0_10.33 RMiT 10.33 Network Resilience Network Resilience - 10.33 Shared n/a A financial institution must design a reliable, scalable and secure enterprise network that is able to support its business activities, including future growth plans. link 27
RMiT_v1.0 Appendix_5.7 RMiT_v1.0_Appendix_5.7 RMiT Appendix 5.7 Control Measures on Cybersecurity Control Measures on Cybersecurity - Appendix 5.7 Customer n/a Ensure overall network security controls are implemented including the following: (a) dedicated firewalls at all segments. All external-facing firewalls must be deployed on High Availability (HA) configuration and “fail-close” mode activated. Deploy different brand name/model for two firewalls located in sequence within the same network path; (b) IPS at all critical network segments with the capability to inspect and monitor encrypted network traffic; (c) web and email filtering systems such as web-proxy, spam filter and anti-spoofing controls; (d) endpoint protection solution to detect and remove security threats including viruses and malicious software; (e) solution to mitigate advanced persistent threats including zero-day and signatureless malware; and (f) capture the full network packets to rebuild relevant network sessions to aid forensics in the event of incidents. link 21
SOC_2 CC6.1 SOC_2_CC6.1 SOC 2 Type 2 CC6.1 Logical and Physical Access Controls Logical access security software, infrastructure, and architectures Shared The customer is responsible for implementing this recommendation. The following points of focus, specifically related to all engagements using the trust services criteria, highlight important characteristics relating to this criterion: • Identifies and Manages the Inventory of Information Assets — The entity identifies, Page 29 TSP Ref. # TRUST SERVICES CRITERIA AND POINTS OF FOCUS inventories, classifies, and manages information assets. • Restricts Logical Access — Logical access to information assets, including hardware, data (at-rest, during processing, or in transmission), software, administrative authorities, mobile devices, output, and offline system components is restricted through the use of access control software and rule sets. • Identifies and Authenticates Users — Persons, infrastructure, and software are identified and authenticated prior to accessing information assets, whether locally or remotely. • Considers Network Segmentation — Network segmentation permits unrelated portions of the entity's information system to be isolated from each other. • Manages Points of Access — Points of access by outside entities and the types of data that flow through the points of access are identified, inventoried, and managed. The types of individuals and systems using each point of access are identified, documented, and managed. • Restricts Access to Information Assets — Combinations of data classification, separate data structures, port restrictions, access protocol restrictions, user identification, and digital certificates are used to establish access-control rules for information assets. • Manages Identification and Authentication — Identification and authentication requirements are established, documented, and managed for individuals and systems accessing entity information, infrastructure, and software. • Manages Credentials for Infrastructure and Software — New internal and external infrastructure and software are registered, authorized, and documented prior to being granted access credentials and implemented on the network or access point. Credentials are removed and access is disabled when access is no longer required or the infrastructure and software are no longer in use. • Uses Encryption to Protect Data — The entity uses encryption to supplement other measures used to protect data at rest, when such protections are deemed appropriate based on assessed risk. • Protects Encryption Keys — Processes are in place to protect encryption keys during generation, storage, use, and destruction 75
SOC_2 CC6.6 SOC_2_CC6.6 SOC 2 Type 2 CC6.6 Logical and Physical Access Controls Security measures against threats outside system boundaries Shared The customer is responsible for implementing this recommendation. • Restricts Access — The types of activities that can occur through a communication channel (for example, FTP site, router port) are restricted. • Protects Identification and Authentication Credentials — Identification and authentication credentials are protected during transmission outside its system boundaries. • Requires Additional Authentication or Credentials — Additional authentication information or credentials are required when accessing the system from outside its boundaries. • Implements Boundary Protection Systems — Boundary protection systems (for example, firewalls, demilitarized zones, and intrusion detection systems) are implemented to protect external access points from attempts and unauthorized access and are monitored to detect such attempts 37
SOC_2 CC6.7 SOC_2_CC6.7 SOC 2 Type 2 CC6.7 Logical and Physical Access Controls Restrict the movement of information to authorized users Shared The customer is responsible for implementing this recommendation. • Restricts the Ability to Perform Transmission — Data loss prevention processes and technologies are used to restrict ability to authorize and execute transmission, movement, and removal of information. • Uses Encryption Technologies or Secure Communication Channels to Protect Data — Encryption technologies or secured communication channels are used to protect transmission of data and other communications beyond connectivity access points. • Protects Removal Media — Encryption technologies and physical asset protections are used for removable media (such as USB drives and backup tapes), as appropriate. • Protects Mobile Devices — Processes are in place to protect mobile devices (such as laptops, smart phones, and tablets) that serve as information assets 29
SOC_2023 CC2.3 SOC_2023_CC2.3 SOC 2023 CC2.3 Information and Communication Facilitate effective internal communication. Shared n/a Entity to communicate with external parties regarding matters affecting the functioning of internal control. 218
SOC_2023 CC5.3 SOC_2023_CC5.3 SOC 2023 CC5.3 Control Activities Maintain alignment with organizational objectives and regulatory requirements. Shared n/a Entity deploys control activities through policies that establish what is expected and in procedures that put policies into action by establishing Policies and Procedures to Support Deployment of Management’s Directives, Responsibility and Accountability for Executing Policies and Procedures, perform tasks in a timely manner, taking corrective actions, perform using competent personnel and reassess policies and procedures. 229
SOC_2023 CC7.4 SOC_2023_CC7.4 SOC 2023 CC7.4 Systems Operations Effectively manage security incidents, minimize their impact, and protect assets, operations, and reputation. Shared n/a The entity responds to identified security incidents by: a. Executing a defined incident-response program to understand, contain, remediate, and communicate security incidents by assigning roles and responsibilities; b. Establishing procedures to contain security incidents; c. Mitigating ongoing security incidents, End Threats Posed by Security Incidents; d. Restoring operations; e. Developing and Implementing Communication Protocols for Security Incidents; f. Obtains Understanding of Nature of Incident and Determines Containment Strategy; g. Remediation Identified Vulnerabilities; h. Communicating Remediation Activities; and, i. Evaluating the Effectiveness of Incident Response and periodic incident evaluations. 213
SWIFT_CSCF_2024 1.1 SWIFT_CSCF_2024_1.1 SWIFT Customer Security Controls Framework 2024 1.1 Physical and Environmental Security Swift Environment Protection Shared 1. Segmentation between the user's Swift infrastructure and the larger enterprise network reduces the attack surface and has shown to be an effective way to defend against cyber-attacks that commonly involve a compromise of the general enterprise IT environment. 2. Effective segmentation includes network-level separation, access restrictions, and connectivity restrictions. To ensure the protection of the user’s Swift infrastructure from potentially compromised elements of the general IT environment and external environment. 69
SWIFT_CSCF_2024 1.5 SWIFT_CSCF_2024_1.5 SWIFT Customer Security Controls Framework 2024 1.5 Physical and Environmental Security Customer Environment Protection Shared 1. Segmentation between the customer’s connectivity infrastructure and its larger enterprise network reduces the attack surface and has shown to be an effective way to defend against cyber-attacks that commonly involve compromise of the general enterprise IT environment. 2. Effective segmentation will include network-level separation, access restrictions, and connectivity restrictions. To ensure the protection of the customer’s connectivity infrastructure from external environment and potentially compromised elements of the general IT environment. 57
SWIFT_CSCF_2024 9.1 SWIFT_CSCF_2024_9.1 404 not found n/a n/a 57
SWIFT_CSCF_v2021 1.1 SWIFT_CSCF_v2021_1.1 SWIFT CSCF v2021 1.1 SWIFT Environment Protection SWIFT Environment Protection n/a Ensure the protection of the user's local SWIFT infrastructure from potentially compromised elements of the general IT environment and external environment. link 28
SWIFT_CSCF_v2022 1.1 SWIFT_CSCF_v2022_1.1 SWIFT CSCF v2022 1.1 1. Restrict Internet Access & Protect Critical Systems from General IT Environment Ensure the protection of the user's local SWIFT infrastructure from potentially compromised elements of the general IT environment and external environment. Shared n/a A separated secure zone safeguards the user's SWIFT infrastructure from compromises and attacks on the broader enterprise and external environments. link 19
SWIFT_CSCF_v2022 1.5A SWIFT_CSCF_v2022_1.5A SWIFT CSCF v2022 1.5A 1. Restrict Internet Access & Protect Critical Systems from General IT Environment Ensure the protection of the customer’s connectivity infrastructure from external environment and potentially compromised elements of the general IT environment. Shared n/a A separated secure zone safeguards the customer's infrastructure used for external connectivity from external environments and compromises or attacks on the broader enterprise environment. link 24
U.07.1 - Isolated U.07.1 - Isolated 404 not found n/a n/a 62
U.12.1 - Network Connections U.12.1 - Network Connections 404 not found n/a n/a 6
U.12.2 - Network Connections U.12.2 - Network connections 404 not found n/a n/a 6
UK_NCSC_CSP 11 UK_NCSC_CSP_11 UK NCSC CSP 11 External interface protection External interface protection Shared n/a All external or less trusted interfaces of the service should be identified and appropriately defended. link 5
Initiatives usage
Initiative DisplayName Initiative Id Initiative Category State Type polSet in AzUSGov
[Deprecated]: DoD Impact Level 4 8d792a84-723c-4d92-a3c3-e4ed16a2d133 Regulatory Compliance Deprecated BuiltIn true
[Deprecated]: New Zealand ISM Restricted d1a462af-7e6d-4901-98ac-61570b4ed22a Regulatory Compliance Deprecated BuiltIn unknown
[Deprecated]: New Zealand ISM Restricted v3.5 93d2179e-3068-c82f-2428-d614ae836a04 Regulatory Compliance Deprecated BuiltIn unknown
[Preview]: CMMC 2.0 Level 2 4e50fd13-098b-3206-61d6-d1d78205cb45 Regulatory Compliance Preview BuiltIn true
[Preview]: NIS2 32ff9e30-4725-4ca7-ba3a-904a7721ee87 Regulatory Compliance Preview BuiltIn unknown
[Preview]: Reserve Bank of India - IT Framework for Banks d0d5578d-cc08-2b22-31e3-f525374f235a Regulatory Compliance Preview BuiltIn unknown
[Preview]: Reserve Bank of India - IT Framework for NBFC 7f89f09c-48c1-f28d-1bd5-84f3fb22f86c Regulatory Compliance Preview BuiltIn unknown
[Preview]: SWIFT CSP-CSCF v2020 3e0c67fc-8c7c-406c-89bd-6b6bdc986a22 Regulatory Compliance Preview BuiltIn unknown
[Preview]: SWIFT CSP-CSCF v2021 abf84fac-f817-a70c-14b5-47eec767458a Regulatory Compliance Preview BuiltIn unknown
Canada Federal PBMM 4c4a5f27-de81-430b-b4e5-9cbd50595a87 Regulatory Compliance GA BuiltIn unknown
Canada Federal PBMM 3-1-2020 f8f5293d-df94-484a-a3e7-6b422a999d91 Regulatory Compliance GA BuiltIn unknown
CMMC Level 3 b5629c75-5c77-4422-87b9-2509e680f8de Regulatory Compliance GA BuiltIn true
Cybersecurity Maturity Model Certification (CMMC) Level 2 v1.9.0 a4087154-2edb-4329-b56a-1cc986807f3c Regulatory Compliance GA BuiltIn unknown
EU 2022/2555 (NIS2) 2022 42346945-b531-41d8-9e46-f95057672e88 Regulatory Compliance GA BuiltIn unknown
EU General Data Protection Regulation (GDPR) 2016/679 7326812a-86a4-40c8-af7c-8945de9c4913 Regulatory Compliance GA BuiltIn unknown
FBI Criminal Justice Information Services (CJIS) v5.9.5 4fcabc2a-30b2-4ba5-9fbb-b1a4e08fb721 Regulatory Compliance GA BuiltIn unknown
FedRAMP High d5264498-16f4-418a-b659-fa7ef418175f Regulatory Compliance GA BuiltIn true
FedRAMP Moderate e95f5a9f-57ad-4d03-bb0b-b1d16db93693 Regulatory Compliance GA BuiltIn true
HITRUST CSF v11.3 e0d47b75-5d99-442a-9d60-07f2595ab095 Regulatory Compliance GA BuiltIn unknown
HITRUST/HIPAA a169a624-5599-4385-a696-c8d643089fab Regulatory Compliance GA BuiltIn unknown
IRS1075 September 2016 105e0327-6175-4eb2-9af4-1fba43bdb39d Regulatory Compliance GA BuiltIn true
ISO 27001:2013 89c6cddc-1c73-4ac1-b19c-54d1a15a42f2 Regulatory Compliance GA BuiltIn true
Microsoft cloud security benchmark 1f3afdf9-d0c9-4c3d-847f-89da613e70a8 Security Center GA BuiltIn true
New Zealand ISM 4f5b1359-4f8e-4d7c-9733-ea47fcde891e Regulatory Compliance GA BuiltIn unknown
NIST 800-171 R3 38916c43-6876-4971-a4b1-806aa7e55ccc Regulatory Compliance GA BuiltIn unknown
NIST SP 800-171 Rev. 2 03055927-78bd-4236-86c0-f36125a10dc9 Regulatory Compliance GA BuiltIn true
NIST SP 800-53 R5.1.1 60205a79-6280-4e20-a147-e2011e09dc78 Regulatory Compliance GA BuiltIn unknown
NIST SP 800-53 Rev. 4 cf25b9c1-bd23-4eb6-bd2c-f4f3ac644a5f Regulatory Compliance GA BuiltIn true
NIST SP 800-53 Rev. 5 179d1daa-458f-4e47-8086-2a68d0d6c38f Regulatory Compliance GA BuiltIn true
NL BIO Cloud Theme 6ce73208-883e-490f-a2ac-44aac3b3687f Regulatory Compliance GA BuiltIn unknown
NL BIO Cloud Theme V2 d8b2ffbe-c6a8-4622-965d-4ade11d1d2ee Regulatory Compliance GA BuiltIn unknown
NZISM v3.7 4476df0a-18ab-4bfe-b6ad-cccae1cf320f Regulatory Compliance GA BuiltIn unknown
PCI DSS v4 c676748e-3af9-4e22-bc28-50feed564afb Regulatory Compliance GA BuiltIn true
PCI DSS v4.0.1 a06d5deb-24aa-4991-9d58-fa7563154e31 Regulatory Compliance GA BuiltIn unknown
PCI v3.2.1:2018 496eeda9-8f2f-4d5e-8dfd-204f0a92ed41 Regulatory Compliance GA BuiltIn unknown
RMIT Malaysia 97a6d4f1-3bed-4cf4-ac5b-0e444c0408d6 Regulatory Compliance GA BuiltIn unknown
SOC 2 Type 2 4054785f-702b-4a98-9215-009cbd58b141 Regulatory Compliance GA BuiltIn true
SOC 2023 53ad89f5-8542-49e9-ba81-1cbd686e0d52 Regulatory Compliance GA BuiltIn unknown
Spain ENS 175daf90-21e1-4fec-b745-7b4c909aa94c Regulatory Compliance GA BuiltIn unknown
SWIFT CSP-CSCF v2022 7bc7cd6c-4114-ff31-3cac-59be3157596d Regulatory Compliance GA BuiltIn unknown
SWIFT Customer Security Controls Framework 2024 7499005e-df5a-45d9-810f-041cf346678c Regulatory Compliance GA BuiltIn unknown
UK OFFICIAL and UK NHS 3937f550-eedd-4639-9c5e-294358be442e Regulatory Compliance GA BuiltIn unknown
History
Date/Time (UTC ymd) (i) Change type Change detail
2021-01-05 16:06:49 change Major (2.0.1 > 3.0.0)
JSON compare
compare mode: version left: version right:
JSON
api-version=2021-06-01
EPAC