last sync: 2025-Feb-05 19:33:00 UTC

Private endpoint connections on Azure SQL Database should be enabled

Azure BuiltIn Policy definition

Source Azure Portal
Display name Private endpoint connections on Azure SQL Database should be enabled
Id 7698e800-9299-47a6-b3b6-5a0fee576eed
Version 1.1.0
Details on versioning
Versioning Versions supported for Versioning: 1
1.1.0
Built-in Versioning [Preview]
Category SQL
Microsoft Learn
Description Private endpoint connections enforce secure communication by enabling private connectivity to Azure SQL Database.
Mode Indexed
Type BuiltIn
Preview False
Deprecated False
Effect Default
Audit
Allowed
Audit, Disabled
RBAC role(s) none
Rule aliases IF (2)
Alias Namespace ResourceType Path PathIsDefault DefaultPath Modifiable
Microsoft.Sql/servers/privateEndpointConnections[*] Microsoft.Sql servers properties.privateEndpointConnections[*] True False
Microsoft.Sql/servers/privateEndpointConnections[*].privateLinkServiceConnectionState.status Microsoft.Sql servers properties.privateEndpointConnections[*].properties.privateLinkServiceConnectionState.status True False
Rule resource types IF (1)
Microsoft.Sql/servers
Compliance
The following 78 compliance controls are associated with this Policy definition 'Private endpoint connections on Azure SQL Database should be enabled' (7698e800-9299-47a6-b3b6-5a0fee576eed)
Control Domain Control Name MetadataId Category Title Owner Requirements Description Info Policy#
Azure_Security_Benchmark_v2.0 NS-2 Azure_Security_Benchmark_v2.0_NS-2 Azure Security Benchmark NS-2 Network Security Connect private networks together Customer Use Azure ExpressRoute or Azure virtual private network (VPN) to create private connections between Azure datacenters and on-premises infrastructure in a colocation environment. ExpressRoute connections do not go over the public internet , and they offer more reliability, faster speeds, and lower latencies than typical internet connections. For point-to-site VPN and site-to-site VPN, you can connect on-premises devices or networks to a virtual network using any combination of these VPN options and Azure ExpressRoute. To connect two or more virtual networks in Azure together, use virtual network peering or Private Link. Network traffic between peered virtual networks is private and is kept on the Azure backbone network. What are the ExpressRoute connectivity models: https://docs.microsoft.com/azure/expressroute/expressroute-connectivity-models Azure VPN overview: https://docs.microsoft.com/azure/vpn-gateway/vpn-gateway-about-vpngateways Virtual network peering: https://docs.microsoft.com/azure/virtual-network/virtual-network-peering-overview Azure Private Link: https://docs.microsoft.com/azure/private-link/private-link-service-overview n/a link 15
Azure_Security_Benchmark_v2.0 NS-3 Azure_Security_Benchmark_v2.0_NS-3 Azure Security Benchmark NS-3 Network Security Establish private network access to Azure services Customer Use Azure Private Link to enable private access to Azure services from your virtual networks, without crossing the internet. In situations where Azure Private Link is not yet available, use Azure Virtual Network service endpoints. Azure Virtual Network service endpoints provide secure access to services via an optimized route over the Azure backbone network. Private access is an additional defense in depth measure in addition to authentication and traffic security offered by Azure services. Understand Azure Private Link: https://docs.microsoft.com/azure/private-link/private-link-overview Understand Virtual Network service endpoints: https://docs.microsoft.com/azure/virtual-network/virtual-network-service-endpoints-overview n/a link 13
Azure_Security_Benchmark_v3.0 NS-2 Azure_Security_Benchmark_v3.0_NS-2 Microsoft cloud security benchmark NS-2 Network Security Secure cloud services with network controls Shared **Security Principle:** Secure cloud services by establishing a private access point for the resources. You should also disable or restrict access from public network when possible. **Azure Guidance:** Deploy private endpoints for all Azure resources that support the Private Link feature, to establish a private access point for the resources. You should also disable or restrict public network access to services where feasible. For certain services, you also have the option to deploy VNet integration for the service where you can restrict the VNET to establish a private access point for the service. **Implementation and additional context:** Understand Azure Private Link: https://docs.microsoft.com/azure/private-link/private-link-overview n/a link 40
Canada_Federal_PBMM_3-1-2020 AC_4(21) Canada_Federal_PBMM_3-1-2020_AC_4(21) Canada Federal PBMM 3-1-2020 AC 4(21) Information Flow Enforcement Information Flow Enforcement | Physical / Logical Separation of Information Flows Shared The information system separates information flows logically or physically using session encryption to accomplish separation of all sessions. To enhance security measures and safeguard sensitive data from unauthorized access or interception. 27
Canada_Federal_PBMM_3-1-2020 CA_3 Canada_Federal_PBMM_3-1-2020_CA_3 Canada Federal PBMM 3-1-2020 CA 3 Information System Connections System Interconnections Shared 1. The organization authorizes connection from information system to other information system through the use of Interconnection Security Agreements. 2. The organization documents, for each interconnection, the interface characteristics, security requirements, and the nature of the information communicated. 3. The organization reviews and updates Interconnection Security Agreements annually. To establish and maintain secure connections between information systems. 77
Canada_Federal_PBMM_3-1-2020 CA_3(3) Canada_Federal_PBMM_3-1-2020_CA_3(3) Canada Federal PBMM 3-1-2020 CA 3(3) Information System Connections System Interconnections | Classified Non-National Security System Connections Shared The organization prohibits the direct connection of any internal network or system to an external network without the use of security controls approved by the information owner. To ensure the integrity and security of internal systems against external threats. 77
Canada_Federal_PBMM_3-1-2020 CA_3(5) Canada_Federal_PBMM_3-1-2020_CA_3(5) Canada Federal PBMM 3-1-2020 CA 3(5) Information System Connections System Interconnections | Restrictions on External Network Connections Shared The organization employs allow-all, deny-by-exception; deny-all policy for allowing any systems to connect to external information systems. To enhance security posture against unauthorized access. 77
CMMC_2.0_L2 AC.L1-3.1.1 CMMC_2.0_L2_AC.L1-3.1.1 404 not found n/a n/a 54
CMMC_2.0_L2 AC.L2-3.1.12 CMMC_2.0_L2_AC.L2-3.1.12 404 not found n/a n/a 35
CMMC_2.0_L2 AC.L2-3.1.13 CMMC_2.0_L2_AC.L2-3.1.13 404 not found n/a n/a 29
CMMC_2.0_L2 AC.L2-3.1.14 CMMC_2.0_L2_AC.L2-3.1.14 404 not found n/a n/a 29
CMMC_2.0_L2 AC.L2-3.1.3 CMMC_2.0_L2_AC.L2-3.1.3 404 not found n/a n/a 52
CMMC_2.0_L2 SC.L1-3.13.1 CMMC_2.0_L2_SC.L1-3.13.1 404 not found n/a n/a 56
CMMC_2.0_L2 SC.L1-3.13.5 CMMC_2.0_L2_SC.L1-3.13.5 404 not found n/a n/a 51
CMMC_2.0_L2 SC.L2-3.13.2 CMMC_2.0_L2_SC.L2-3.13.2 404 not found n/a n/a 51
CSA_v4.0.12 CEK_03 CSA_v4.0.12_CEK_03 CSA Cloud Controls Matrix v4.0.12 CEK 03 Cryptography, Encryption & Key Management Data Encryption Shared n/a Provide cryptographic protection to data at-rest and in-transit, using cryptographic libraries certified to approved standards. 58
CSA_v4.0.12 DSP_04 CSA_v4.0.12_DSP_04 CSA Cloud Controls Matrix v4.0.12 DSP 04 Data Security and Privacy Lifecycle Management Data Classification Shared n/a Classify data according to its type and sensitivity level. 6
CSA_v4.0.12 DSP_07 CSA_v4.0.12_DSP_07 CSA Cloud Controls Matrix v4.0.12 DSP 07 Data Security and Privacy Lifecycle Management Data Protection by Design and Default Shared n/a Develop systems, products, and business practices based upon a principle of security by design and industry best practices. 16
CSA_v4.0.12 DSP_10 CSA_v4.0.12_DSP_10 CSA Cloud Controls Matrix v4.0.12 DSP 10 Data Security and Privacy Lifecycle Management Sensitive Data Transfer Shared n/a Define, implement and evaluate processes, procedures and technical measures that ensure any transfer of personal or sensitive data is protected from unauthorized access and only processed within scope as permitted by the respective laws and regulations. 45
CSA_v4.0.12 DSP_17 CSA_v4.0.12_DSP_17 CSA Cloud Controls Matrix v4.0.12 DSP 17 Data Security and Privacy Lifecycle Management Sensitive Data Protection Shared n/a Define and implement, processes, procedures and technical measures to protect sensitive data throughout it's lifecycle. 15
Cyber_Essentials_v3.1 1 Cyber_Essentials_v3.1_1 Cyber Essentials v3.1 1 Cyber Essentials Firewalls Shared n/a Aim: to make sure that only secure and necessary network services can be accessed from the internet. 37
EU_2555_(NIS2)_2022 EU_2555_(NIS2)_2022_21 EU_2555_(NIS2)_2022_21 EU 2022/2555 (NIS2) 2022 21 Cybersecurity risk-management measures Shared n/a Requires essential and important entities to take appropriate measures to manage cybersecurity risks. 194
EU_GDPR_2016_679_Art. 24 EU_GDPR_2016_679_Art._24 EU General Data Protection Regulation (GDPR) 2016/679 Art. 24 Chapter 4 - Controller and processor Responsibility of the controller Shared n/a n/a 311
EU_GDPR_2016_679_Art. 25 EU_GDPR_2016_679_Art._25 EU General Data Protection Regulation (GDPR) 2016/679 Art. 25 Chapter 4 - Controller and processor Data protection by design and by default Shared n/a n/a 311
EU_GDPR_2016_679_Art. 28 EU_GDPR_2016_679_Art._28 EU General Data Protection Regulation (GDPR) 2016/679 Art. 28 Chapter 4 - Controller and processor Processor Shared n/a n/a 311
EU_GDPR_2016_679_Art. 32 EU_GDPR_2016_679_Art._32 EU General Data Protection Regulation (GDPR) 2016/679 Art. 32 Chapter 4 - Controller and processor Security of processing Shared n/a n/a 311
FBI_Criminal_Justice_Information_Services_v5.9.5_5 .1 FBI_Criminal_Justice_Information_Services_v5.9.5_5.1 FBI Criminal Justice Information Services (CJIS) v5.9.5 5.1 Policy and Implementation - Systems And Communications Protection Systems And Communications Protection Shared In addition, applications, services, or information systems must have the capability to ensure system integrity through the detection and protection against unauthorized changes to software and information. Examples of systems and communications safeguards range from boundary and transmission protection to securing an agency's virtualized environment. 111
FedRAMP_High_R4 AC-17 FedRAMP_High_R4_AC-17 FedRAMP High AC-17 Access Control Remote Access Shared n/a The organization: a. Establishes and documents usage restrictions, configuration/connection requirements, and implementation guidance for each type of remote access allowed; and b. Authorizes remote access to the information system prior to allowing such connections. Supplemental Guidance: Remote access is access to organizational information systems by users (or processes acting on behalf of users) communicating through external networks (e.g., the Internet). Remote access methods include, for example, dial-up, broadband, and wireless. Organizations often employ encrypted virtual private networks (VPNs) to enhance confidentiality and integrity over remote connections. The use of encrypted VPNs does not make the access non-remote; however, the use of VPNs, when adequately provisioned with appropriate security controls (e.g., employing appropriate encryption techniques for confidentiality and integrity protection) may provide sufficient assurance to the organization that it can effectively treat such connections as internal networks. Still, VPN connections traverse external networks, and the encrypted VPN does not enhance the availability of remote connections. Also, VPNs with encrypted tunnels can affect the organizational capability to adequately monitor network communications traffic for malicious code. Remote access controls apply to information systems other than public web servers or systems designed for public access. This control addresses authorization prior to allowing remote access without specifying the formats for such authorization. While organizations may use interconnection security agreements to authorize remote access connections, such agreements are not required by this control. Enforcing access restrictions for remote connections is addressed in AC-3. Related controls: AC-2, AC-3, AC-18, AC-19, AC-20, CA-3, CA-7, CM-8, IA-2, IA-3, IA-8, MA-4, PE-17, PL-4, SC-10, SI-4. References: NIST Special Publications 800-46, 800-77, 800-113, 800-114, 800-121. link 41
FedRAMP_High_R4 AC-17(1) FedRAMP_High_R4_AC-17(1) FedRAMP High AC-17 (1) Access Control Automated Monitoring / Control Shared n/a The information system monitors and controls remote access methods. Supplemental Guidance: Automated monitoring and control of remote access sessions allows organizations to detect cyber attacks and also ensure ongoing compliance with remote access policies by auditing connection activities of remote users on a variety of information system components (e.g., servers, workstations, notebook computers, smart phones, and tablets). Related controls: AU-2, AU-12. link 37
FedRAMP_High_R4 AC-4 FedRAMP_High_R4_AC-4 FedRAMP High AC-4 Access Control Information Flow Enforcement Shared n/a The information system enforces approved authorizations for controlling the flow of information within the system and between interconnected systems based on [Assignment: organization-defined information flow control policies]. Supplemental Guidance: Information flow control regulates where information is allowed to travel within an information system and between information systems (as opposed to who is allowed to access the information) and without explicit regard to subsequent accesses to that information. Flow control restrictions include, for example, keeping export-controlled information from being transmitted in the clear to the Internet, blocking outside traffic that claims to be from within the organization, restricting web requests to the Internet that are not from the internal web proxy server, and limiting information transfers between organizations based on data structures and content. Transferring information between information systems representing different security domains with different security policies introduces risk that such transfers violate one or more domain security policies. In such situations, information owners/stewards provide guidance at designated policy enforcement points between interconnected systems. Organizations consider mandating specific architectural solutions when required to enforce specific security policies. Enforcement includes, for example: (i) prohibiting information transfers between interconnected systems (i.e., allowing access only); (ii) employing hardware mechanisms to enforce one-way information flows; and (iii) implementing trustworthy regarding mechanisms to reassign security attributes and security labels. Organizations commonly employ information flow control policies and enforcement mechanisms to control the flow of information between designated sources and destinations (e.g., networks, individuals, and devices) within information systems and between interconnected systems. Flow control is based on the characteristics of the information and/or the information path. Enforcement occurs, for example, in boundary protection devices (e.g., gateways, routers, guards, encrypted tunnels, firewalls) that employ rule sets or establish configuration settings that restrict information system services, provide a packet-filtering capability based on header information, or message- filtering capability based on message content (e.g., implementing key word searches or using document characteristics). Organizations also consider the trustworthiness of filtering/inspection mechanisms (i.e., hardware, firmware, and software components) that are critical to information flow enforcement. Control enhancements 3 through 22 primarily address cross-domain solution needs which focus on more advanced filtering techniques, in-depth analysis, and stronger flow enforcement mechanisms implemented in cross-domain products, for example, high-assurance guards. Such capabilities are generally not available in commercial off-the-shelf information technology products. Related controls: AC-3, AC-17, AC-19, AC-21, CM-6, CM-7, SA-8, SC-2, SC-5, SC-7, SC-18. References: None. link 52
FedRAMP_High_R4 SC-7 FedRAMP_High_R4_SC-7 FedRAMP High SC-7 System And Communications Protection Boundary Protection Shared n/a The information system: a. Monitors and controls communications at the external boundary of the system and at key internal boundaries within the system; b. Implements subnetworks for publicly accessible system components that are [Selection: physically; logically] separated from internal organizational networks; and c. Connects to external networks or information systems only through managed interfaces consisting of boundary protection devices arranged in accordance with an organizational security architecture. Supplemental Guidance: Managed interfaces include, for example, gateways, routers, firewalls, guards, network-based malicious code analysis and virtualization systems, or encrypted tunnels implemented within a security architecture (e.g., routers protecting firewalls or application gateways residing on protected subnetworks). Subnetworks that are physically or logically separated from internal networks are referred to as demilitarized zones or DMZs. Restricting or prohibiting interfaces within organizational information systems includes, for example, restricting external web traffic to designated web servers within managed interfaces and prohibiting external traffic that appears to be spoofing internal addresses. Organizations consider the shared nature of commercial telecommunications services in the implementation of security controls associated with the use of such services. Commercial telecommunications services are commonly based on network components and consolidated management systems shared by all attached commercial customers, and may also include third party-provided access lines and other service elements. Such transmission services may represent sources of increased risk despite contract security provisions. Related controls: AC-4, AC-17, CA-3, CM-7, CP-8, IR-4, RA-3, SC-5, SC-13. References: FIPS Publication 199; NIST Special Publications 800-41, 800-77. link 52
FedRAMP_High_R4 SC-7(3) FedRAMP_High_R4_SC-7(3) FedRAMP High SC-7 (3) System And Communications Protection Access Points Shared n/a The organization limits the number of external network connections to the information system. Supplemental Guidance: Limiting the number of external network connections facilitates more comprehensive monitoring of inbound and outbound communications traffic. The Trusted Internet Connection (TIC) initiative is an example of limiting the number of external network connections. link 51
FedRAMP_Moderate_R4 AC-17 FedRAMP_Moderate_R4_AC-17 FedRAMP Moderate AC-17 Access Control Remote Access Shared n/a The organization: a. Establishes and documents usage restrictions, configuration/connection requirements, and implementation guidance for each type of remote access allowed; and b. Authorizes remote access to the information system prior to allowing such connections. Supplemental Guidance: Remote access is access to organizational information systems by users (or processes acting on behalf of users) communicating through external networks (e.g., the Internet). Remote access methods include, for example, dial-up, broadband, and wireless. Organizations often employ encrypted virtual private networks (VPNs) to enhance confidentiality and integrity over remote connections. The use of encrypted VPNs does not make the access non-remote; however, the use of VPNs, when adequately provisioned with appropriate security controls (e.g., employing appropriate encryption techniques for confidentiality and integrity protection) may provide sufficient assurance to the organization that it can effectively treat such connections as internal networks. Still, VPN connections traverse external networks, and the encrypted VPN does not enhance the availability of remote connections. Also, VPNs with encrypted tunnels can affect the organizational capability to adequately monitor network communications traffic for malicious code. Remote access controls apply to information systems other than public web servers or systems designed for public access. This control addresses authorization prior to allowing remote access without specifying the formats for such authorization. While organizations may use interconnection security agreements to authorize remote access connections, such agreements are not required by this control. Enforcing access restrictions for remote connections is addressed in AC-3. Related controls: AC-2, AC-3, AC-18, AC-19, AC-20, CA-3, CA-7, CM-8, IA-2, IA-3, IA-8, MA-4, PE-17, PL-4, SC-10, SI-4. References: NIST Special Publications 800-46, 800-77, 800-113, 800-114, 800-121. link 41
FedRAMP_Moderate_R4 AC-17(1) FedRAMP_Moderate_R4_AC-17(1) FedRAMP Moderate AC-17 (1) Access Control Automated Monitoring / Control Shared n/a The information system monitors and controls remote access methods. Supplemental Guidance: Automated monitoring and control of remote access sessions allows organizations to detect cyber attacks and also ensure ongoing compliance with remote access policies by auditing connection activities of remote users on a variety of information system components (e.g., servers, workstations, notebook computers, smart phones, and tablets). Related controls: AU-2, AU-12. link 37
FedRAMP_Moderate_R4 AC-4 FedRAMP_Moderate_R4_AC-4 FedRAMP Moderate AC-4 Access Control Information Flow Enforcement Shared n/a The information system enforces approved authorizations for controlling the flow of information within the system and between interconnected systems based on [Assignment: organization-defined information flow control policies]. Supplemental Guidance: Information flow control regulates where information is allowed to travel within an information system and between information systems (as opposed to who is allowed to access the information) and without explicit regard to subsequent accesses to that information. Flow control restrictions include, for example, keeping export-controlled information from being transmitted in the clear to the Internet, blocking outside traffic that claims to be from within the organization, restricting web requests to the Internet that are not from the internal web proxy server, and limiting information transfers between organizations based on data structures and content. Transferring information between information systems representing different security domains with different security policies introduces risk that such transfers violate one or more domain security policies. In such situations, information owners/stewards provide guidance at designated policy enforcement points between interconnected systems. Organizations consider mandating specific architectural solutions when required to enforce specific security policies. Enforcement includes, for example: (i) prohibiting information transfers between interconnected systems (i.e., allowing access only); (ii) employing hardware mechanisms to enforce one-way information flows; and (iii) implementing trustworthy regarding mechanisms to reassign security attributes and security labels. Organizations commonly employ information flow control policies and enforcement mechanisms to control the flow of information between designated sources and destinations (e.g., networks, individuals, and devices) within information systems and between interconnected systems. Flow control is based on the characteristics of the information and/or the information path. Enforcement occurs, for example, in boundary protection devices (e.g., gateways, routers, guards, encrypted tunnels, firewalls) that employ rule sets or establish configuration settings that restrict information system services, provide a packet-filtering capability based on header information, or message- filtering capability based on message content (e.g., implementing key word searches or using document characteristics). Organizations also consider the trustworthiness of filtering/inspection mechanisms (i.e., hardware, firmware, and software components) that are critical to information flow enforcement. Control enhancements 3 through 22 primarily address cross-domain solution needs which focus on more advanced filtering techniques, in-depth analysis, and stronger flow enforcement mechanisms implemented in cross-domain products, for example, high-assurance guards. Such capabilities are generally not available in commercial off-the-shelf information technology products. Related controls: AC-3, AC-17, AC-19, AC-21, CM-6, CM-7, SA-8, SC-2, SC-5, SC-7, SC-18. References: None. link 52
FedRAMP_Moderate_R4 SC-7 FedRAMP_Moderate_R4_SC-7 FedRAMP Moderate SC-7 System And Communications Protection Boundary Protection Shared n/a The information system: a. Monitors and controls communications at the external boundary of the system and at key internal boundaries within the system; b. Implements subnetworks for publicly accessible system components that are [Selection: physically; logically] separated from internal organizational networks; and c. Connects to external networks or information systems only through managed interfaces consisting of boundary protection devices arranged in accordance with an organizational security architecture. Supplemental Guidance: Managed interfaces include, for example, gateways, routers, firewalls, guards, network-based malicious code analysis and virtualization systems, or encrypted tunnels implemented within a security architecture (e.g., routers protecting firewalls or application gateways residing on protected subnetworks). Subnetworks that are physically or logically separated from internal networks are referred to as demilitarized zones or DMZs. Restricting or prohibiting interfaces within organizational information systems includes, for example, restricting external web traffic to designated web servers within managed interfaces and prohibiting external traffic that appears to be spoofing internal addresses. Organizations consider the shared nature of commercial telecommunications services in the implementation of security controls associated with the use of such services. Commercial telecommunications services are commonly based on network components and consolidated management systems shared by all attached commercial customers, and may also include third party-provided access lines and other service elements. Such transmission services may represent sources of increased risk despite contract security provisions. Related controls: AC-4, AC-17, CA-3, CM-7, CP-8, IR-4, RA-3, SC-5, SC-13. References: FIPS Publication 199; NIST Special Publications 800-41, 800-77. link 52
FedRAMP_Moderate_R4 SC-7(3) FedRAMP_Moderate_R4_SC-7(3) FedRAMP Moderate SC-7 (3) System And Communications Protection Access Points Shared n/a The organization limits the number of external network connections to the information system. Supplemental Guidance: Limiting the number of external network connections facilitates more comprehensive monitoring of inbound and outbound communications traffic. The Trusted Internet Connection (TIC) initiative is an example of limiting the number of external network connections. link 51
FFIEC_CAT_2017 3.1.2 FFIEC_CAT_2017_3.1.2 FFIEC CAT 2017 3.1.2 Cybersecurity Controls Access and Data Management Shared n/a Employee access is granted to systems and confidential data based on job responsibilities and the principles of least privilege.'FFIEC_Cybersecurity Control'!F8 - Employee access to systems and confidential data provides for separation of duties. - Elevated privileges (e.g., administrator privileges) are limited and tightly controlled (e.g., assigned to individuals, not shared, and require stronger 'FFIEC_Cybersecurity Control'!F7password controls). - User access reviews are performed periodically for all systems and applications based on the risk to the application or system. - Changes to physical and logical user access, including those that result from voluntary and involuntary terminations, are submitted to and approved by appropriate personnel. - Identification and authentication are required and managed for access to systems, applications, and hardware. - Access controls include password complexity and limits to password attempts and reuse. - All default passwords and unnecessary default accounts are changed before system implementation. - Customer access to Internet-based products or services requires authentication controls (e.g., layered controls, multifactor) that are commensurate with the risk. - Production and non-production environments are segregated to prevent unauthorized access or changes to information assets. (*N/A if no production environment exists at the institution or the institution’s third party.) - Physical security controls are used to prevent unauthorized access to information systems and telecommunication systems. - All passwords are encrypted in storage and in transit. - Confidential data are encrypted when transmitted across public or untrusted networks (e.g., Internet). - Mobile devices (e.g., laptops, tablets, and removable media) are encrypted if used to store confidential data. (*N/A if mobile devices are not used.) - Remote access to critical systems by employees, contractors, and third parties uses encrypted connections and multifactor authentication. - Administrative, physical, or technical controls are in place to prevent users without administrative responsibilities from installing unauthorized software. - Customer service (e.g., the call center) utilizes formal procedures to authenticate customers commensurate with the risk of the transaction or request. - Data is disposed of or destroyed according to documented requirements and within expected time frames. 59
HITRUST_CSF_v11.3 09.m HITRUST_CSF_v11.3_09.m HITRUST CSF v11.3 09.m Network Security Management To ensure the protection of information in networks and protection of the supporting network infrastructure. Shared 1. Vendor default encryption keys, default SNMP community strings on wireless devices, default passwords/passphrases on access points, and other security-related wireless vendor defaults is to be changed prior to authorization of implementation of wireless access points. 2. Wireless encryption keys to be changed when anyone with knowledge of the keys leaves or changes. 3. All authorized and unauthorized wireless access to the information system is to be monitored and installation of wireless access points (WAP) is to be prohibited unless explicitly authorized. Networks shall be managed and controlled in order to protect the organization from threats and to maintain security for the systems and applications using the network, including information in transit. 24
New_Zealand_ISM 10.8.35.C.01 New_Zealand_ISM_10.8.35.C.01 New_Zealand_ISM_10.8.35.C.01 10. Infrastructure 10.8.35.C.01 Security Architecture n/a Security architectures MUST apply the principles of separation and segregation. 31
NIST_SP_800-171_R2_3 .1.1 NIST_SP_800-171_R2_3.1.1 NIST SP 800-171 R2 3.1.1 Access Control Limit system access to authorized users, processes acting on behalf of authorized users, and devices (including other systems). Shared Microsoft and the customer share responsibilities for implementing this requirement. Access control policies (e.g., identity- or role-based policies, control matrices, and cryptography) control access between active entities or subjects (i.e., users or processes acting on behalf of users) and passive entities or objects (e.g., devices, files, records, and domains) in systems. Access enforcement mechanisms can be employed at the application and service level to provide increased information security. Other systems include systems internal and external to the organization. This requirement focuses on account management for systems and applications. The definition of and enforcement of access authorizations, other than those determined by account type (e.g., privileged verses non-privileged) are addressed in requirement 3.1.2. link 52
NIST_SP_800-171_R2_3 .1.12 NIST_SP_800-171_R2_3.1.12 NIST SP 800-171 R2 3.1.12 Access Control Monitor and control remote access sessions. Shared Microsoft and the customer share responsibilities for implementing this requirement. Remote access is access to organizational systems by users (or processes acting on behalf of users) communicating through external networks (e.g., the Internet). Remote access methods include dial-up, broadband, and wireless. Organizations often employ encrypted virtual private networks (VPNs) to enhance confidentiality over remote connections. The use of encrypted VPNs does not make the access non-remote; however, the use of VPNs, when adequately provisioned with appropriate control (e.g., employing encryption techniques for confidentiality protection), may provide sufficient assurance to the organization that it can effectively treat such connections as internal networks. VPNs with encrypted tunnels can affect the capability to adequately monitor network communications traffic for malicious code. Automated monitoring and control of remote access sessions allows organizations to detect cyber-attacks and help to ensure ongoing compliance with remote access policies by auditing connection activities of remote users on a variety of system components (e.g., servers, workstations, notebook computers, smart phones, and tablets). [SP 800-46], [SP 800-77], and [SP 800-113] provide guidance on secure remote access and virtual private networks. link 36
NIST_SP_800-171_R2_3 .1.13 NIST_SP_800-171_R2_3.1.13 NIST SP 800-171 R2 3.1.13 Access Control Employ cryptographic mechanisms to protect the confidentiality of remote access sessions. Shared Microsoft and the customer share responsibilities for implementing this requirement. Cryptographic standards include FIPS-validated cryptography and NSA-approved cryptography. See [NIST CRYPTO]; [NIST CAVP]; [NIST CMVP]; National Security Agency Cryptographic Standards. link 31
NIST_SP_800-171_R2_3 .1.14 NIST_SP_800-171_R2_3.1.14 NIST SP 800-171 R2 3.1.14 Access Control Route remote access via managed access control points. Shared The customer is responsible for implementing this requirement. Routing remote access through managed access control points enhances explicit, organizational control over such connections, reducing the susceptibility to unauthorized access to organizational systems resulting in the unauthorized disclosure of CUI. link 30
NIST_SP_800-171_R2_3 .1.3 NIST_SP_800-171_R2_3.1.3 NIST SP 800-171 R2 3.1.3 Access Control Control the flow of CUI in accordance with approved authorizations. Shared Microsoft and the customer share responsibilities for implementing this requirement. Information flow control regulates where information can travel within a system and between systems (versus who can access the information) and without explicit regard to subsequent accesses to that information. Flow control restrictions include the following: keeping export-controlled information from being transmitted in the clear to the Internet; blocking outside traffic that claims to be from within the organization; restricting requests to the Internet that are not from the internal web proxy server; and limiting information transfers between organizations based on data structures and content. Organizations commonly use information flow control policies and enforcement mechanisms to control the flow of information between designated sources and destinations (e.g., networks, individuals, and devices) within systems and between interconnected systems. Flow control is based on characteristics of the information or the information path. Enforcement occurs in boundary protection devices (e.g., gateways, routers, guards, encrypted tunnels, firewalls) that employ rule sets or establish configuration settings that restrict system services, provide a packet-filtering capability based on header information, or message-filtering capability based on message content (e.g., implementing key word searches or using document characteristics). Organizations also consider the trustworthiness of filtering and inspection mechanisms (i.e., hardware, firmware, and software components) that are critical to information flow enforcement. Transferring information between systems representing different security domains with different security policies introduces risk that such transfers violate one or more domain security policies. In such situations, information owners or stewards provide guidance at designated policy enforcement points between interconnected systems. Organizations consider mandating specific architectural solutions when required to enforce specific security policies. Enforcement includes: prohibiting information transfers between interconnected systems (i.e., allowing access only); employing hardware mechanisms to enforce one-way information flows; and implementing trustworthy regrading mechanisms to reassign security attributes and security labels. link 56
NIST_SP_800-171_R2_3 .13.1 NIST_SP_800-171_R2_3.13.1 NIST SP 800-171 R2 3.13.1 System and Communications Protection Monitor, control, and protect communications (i.e., information transmitted or received by organizational systems) at the external boundaries and key internal boundaries of organizational systems. Shared Microsoft and the customer share responsibilities for implementing this requirement. Communications can be monitored, controlled, and protected at boundary components and by restricting or prohibiting interfaces in organizational systems. Boundary components include gateways, routers, firewalls, guards, network-based malicious code analysis and virtualization systems, or encrypted tunnels implemented within a system security architecture (e.g., routers protecting firewalls or application gateways residing on protected subnetworks). Restricting or prohibiting interfaces in organizational systems includes restricting external web communications traffic to designated web servers within managed interfaces and prohibiting external traffic that appears to be spoofing internal addresses. Organizations consider the shared nature of commercial telecommunications services in the implementation of security requirements associated with the use of such services. Commercial telecommunications services are commonly based on network components and consolidated management systems shared by all attached commercial customers and may also include third party-provided access lines and other service elements. Such transmission services may represent sources of increased risk despite contract security provisions. [SP 800-41] provides guidance on firewalls and firewall policy. [SP 800-125B] provides guidance on security for virtualization technologies. [28] There is no prescribed format or specified level of detail for system security plans. However, organizations ensure that the required information in 3.12.4 is conveyed in those plans. link 51
NIST_SP_800-171_R2_3 .13.2 NIST_SP_800-171_R2_3.13.2 NIST SP 800-171 R2 3.13.2 System and Communications Protection Employ architectural designs, software development techniques, and systems engineering principles that promote effective information security within organizational systems. Shared Microsoft and the customer share responsibilities for implementing this requirement. Organizations apply systems security engineering principles to new development systems or systems undergoing major upgrades. For legacy systems, organizations apply systems security engineering principles to system upgrades and modifications to the extent feasible, given the current state of hardware, software, and firmware components within those systems. The application of systems security engineering concepts and principles helps to develop trustworthy, secure, and resilient systems and system components and reduce the susceptibility of organizations to disruptions, hazards, and threats. Examples of these concepts and principles include developing layered protections; establishing security policies, architecture, and controls as the foundation for design; incorporating security requirements into the system development life cycle; delineating physical and logical security boundaries; ensuring that developers are trained on how to build secure software; and performing threat modeling to identify use cases, threat agents, attack vectors and patterns, design patterns, and compensating controls needed to mitigate risk. Organizations that apply security engineering concepts and principles can facilitate the development of trustworthy, secure systems, system components, and system services; reduce risk to acceptable levels; and make informed risk-management decisions. [SP 800-160-1] provides guidance on systems security engineering. link 51
NIST_SP_800-171_R2_3 .13.5 NIST_SP_800-171_R2_3.13.5 NIST SP 800-171 R2 3.13.5 System and Communications Protection Implement subnetworks for publicly accessible system components that are physically or logically separated from internal networks. Shared Microsoft and the customer share responsibilities for implementing this requirement. Subnetworks that are physically or logically separated from internal networks are referred to as demilitarized zones (DMZs). DMZs are typically implemented with boundary control devices and techniques that include routers, gateways, firewalls, virtualization, or cloud-based technologies. [SP 800-41] provides guidance on firewalls and firewall policy. [SP 800-125B] provides guidance on security for virtualization technologies link 51
NIST_SP_800-53_R4 AC-17 NIST_SP_800-53_R4_AC-17 NIST SP 800-53 Rev. 4 AC-17 Access Control Remote Access Shared n/a The organization: a. Establishes and documents usage restrictions, configuration/connection requirements, and implementation guidance for each type of remote access allowed; and b. Authorizes remote access to the information system prior to allowing such connections. Supplemental Guidance: Remote access is access to organizational information systems by users (or processes acting on behalf of users) communicating through external networks (e.g., the Internet). Remote access methods include, for example, dial-up, broadband, and wireless. Organizations often employ encrypted virtual private networks (VPNs) to enhance confidentiality and integrity over remote connections. The use of encrypted VPNs does not make the access non-remote; however, the use of VPNs, when adequately provisioned with appropriate security controls (e.g., employing appropriate encryption techniques for confidentiality and integrity protection) may provide sufficient assurance to the organization that it can effectively treat such connections as internal networks. Still, VPN connections traverse external networks, and the encrypted VPN does not enhance the availability of remote connections. Also, VPNs with encrypted tunnels can affect the organizational capability to adequately monitor network communications traffic for malicious code. Remote access controls apply to information systems other than public web servers or systems designed for public access. This control addresses authorization prior to allowing remote access without specifying the formats for such authorization. While organizations may use interconnection security agreements to authorize remote access connections, such agreements are not required by this control. Enforcing access restrictions for remote connections is addressed in AC-3. Related controls: AC-2, AC-3, AC-18, AC-19, AC-20, CA-3, CA-7, CM-8, IA-2, IA-3, IA-8, MA-4, PE-17, PL-4, SC-10, SI-4. References: NIST Special Publications 800-46, 800-77, 800-113, 800-114, 800-121. link 41
NIST_SP_800-53_R4 AC-17(1) NIST_SP_800-53_R4_AC-17(1) NIST SP 800-53 Rev. 4 AC-17 (1) Access Control Automated Monitoring / Control Shared n/a The information system monitors and controls remote access methods. Supplemental Guidance: Automated monitoring and control of remote access sessions allows organizations to detect cyber attacks and also ensure ongoing compliance with remote access policies by auditing connection activities of remote users on a variety of information system components (e.g., servers, workstations, notebook computers, smart phones, and tablets). Related controls: AU-2, AU-12. link 37
NIST_SP_800-53_R4 AC-4 NIST_SP_800-53_R4_AC-4 NIST SP 800-53 Rev. 4 AC-4 Access Control Information Flow Enforcement Shared n/a The information system enforces approved authorizations for controlling the flow of information within the system and between interconnected systems based on [Assignment: organization-defined information flow control policies]. Supplemental Guidance: Information flow control regulates where information is allowed to travel within an information system and between information systems (as opposed to who is allowed to access the information) and without explicit regard to subsequent accesses to that information. Flow control restrictions include, for example, keeping export-controlled information from being transmitted in the clear to the Internet, blocking outside traffic that claims to be from within the organization, restricting web requests to the Internet that are not from the internal web proxy server, and limiting information transfers between organizations based on data structures and content. Transferring information between information systems representing different security domains with different security policies introduces risk that such transfers violate one or more domain security policies. In such situations, information owners/stewards provide guidance at designated policy enforcement points between interconnected systems. Organizations consider mandating specific architectural solutions when required to enforce specific security policies. Enforcement includes, for example: (i) prohibiting information transfers between interconnected systems (i.e., allowing access only); (ii) employing hardware mechanisms to enforce one-way information flows; and (iii) implementing trustworthy regarding mechanisms to reassign security attributes and security labels. Organizations commonly employ information flow control policies and enforcement mechanisms to control the flow of information between designated sources and destinations (e.g., networks, individuals, and devices) within information systems and between interconnected systems. Flow control is based on the characteristics of the information and/or the information path. Enforcement occurs, for example, in boundary protection devices (e.g., gateways, routers, guards, encrypted tunnels, firewalls) that employ rule sets or establish configuration settings that restrict information system services, provide a packet-filtering capability based on header information, or message- filtering capability based on message content (e.g., implementing key word searches or using document characteristics). Organizations also consider the trustworthiness of filtering/inspection mechanisms (i.e., hardware, firmware, and software components) that are critical to information flow enforcement. Control enhancements 3 through 22 primarily address cross-domain solution needs which focus on more advanced filtering techniques, in-depth analysis, and stronger flow enforcement mechanisms implemented in cross-domain products, for example, high-assurance guards. Such capabilities are generally not available in commercial off-the-shelf information technology products. Related controls: AC-3, AC-17, AC-19, AC-21, CM-6, CM-7, SA-8, SC-2, SC-5, SC-7, SC-18. References: None. link 52
NIST_SP_800-53_R4 SC-7 NIST_SP_800-53_R4_SC-7 NIST SP 800-53 Rev. 4 SC-7 System And Communications Protection Boundary Protection Shared n/a The information system: a. Monitors and controls communications at the external boundary of the system and at key internal boundaries within the system; b. Implements subnetworks for publicly accessible system components that are [Selection: physically; logically] separated from internal organizational networks; and c. Connects to external networks or information systems only through managed interfaces consisting of boundary protection devices arranged in accordance with an organizational security architecture. Supplemental Guidance: Managed interfaces include, for example, gateways, routers, firewalls, guards, network-based malicious code analysis and virtualization systems, or encrypted tunnels implemented within a security architecture (e.g., routers protecting firewalls or application gateways residing on protected subnetworks). Subnetworks that are physically or logically separated from internal networks are referred to as demilitarized zones or DMZs. Restricting or prohibiting interfaces within organizational information systems includes, for example, restricting external web traffic to designated web servers within managed interfaces and prohibiting external traffic that appears to be spoofing internal addresses. Organizations consider the shared nature of commercial telecommunications services in the implementation of security controls associated with the use of such services. Commercial telecommunications services are commonly based on network components and consolidated management systems shared by all attached commercial customers, and may also include third party-provided access lines and other service elements. Such transmission services may represent sources of increased risk despite contract security provisions. Related controls: AC-4, AC-17, CA-3, CM-7, CP-8, IR-4, RA-3, SC-5, SC-13. References: FIPS Publication 199; NIST Special Publications 800-41, 800-77. link 52
NIST_SP_800-53_R4 SC-7(3) NIST_SP_800-53_R4_SC-7(3) NIST SP 800-53 Rev. 4 SC-7 (3) System And Communications Protection Access Points Shared n/a The organization limits the number of external network connections to the information system. Supplemental Guidance: Limiting the number of external network connections facilitates more comprehensive monitoring of inbound and outbound communications traffic. The Trusted Internet Connection (TIC) initiative is an example of limiting the number of external network connections. link 51
NIST_SP_800-53_R5.1.1 SC.8 NIST_SP_800-53_R5.1.1_SC.8 NIST SP 800-53 R5.1.1 SC.8 System and Communications Protection Transmission Confidentiality and Integrity Shared Protect the [Selection (one or more): confidentiality; integrity] of transmitted information. Protecting the confidentiality and integrity of transmitted information applies to internal and external networks as well as any system components that can transmit information, including servers, notebook computers, desktop computers, mobile devices, printers, copiers, scanners, facsimile machines, and radios. Unprotected communication paths are exposed to the possibility of interception and modification. Protecting the confidentiality and integrity of information can be accomplished by physical or logical means. Physical protection can be achieved by using protected distribution systems. A protected distribution system is a wireline or fiber-optics telecommunications system that includes terminals and adequate electromagnetic, acoustical, electrical, and physical controls to permit its use for the unencrypted transmission of classified information. Logical protection can be achieved by employing encryption techniques. Organizations that rely on commercial providers who offer transmission services as commodity services rather than as fully dedicated services may find it difficult to obtain the necessary assurances regarding the implementation of needed controls for transmission confidentiality and integrity. In such situations, organizations determine what types of confidentiality or integrity services are available in standard, commercial telecommunications service packages. If it is not feasible to obtain the necessary controls and assurances of control effectiveness through appropriate contracting vehicles, organizations can implement appropriate compensating controls. 6
NIST_SP_800-53_R5 AC-17 NIST_SP_800-53_R5_AC-17 NIST SP 800-53 Rev. 5 AC-17 Access Control Remote Access Shared n/a a. Establish and document usage restrictions, configuration/connection requirements, and implementation guidance for each type of remote access allowed; and b. Authorize each type of remote access to the system prior to allowing such connections. link 41
NIST_SP_800-53_R5 AC-17(1) NIST_SP_800-53_R5_AC-17(1) NIST SP 800-53 Rev. 5 AC-17 (1) Access Control Monitoring and Control Shared n/a Employ automated mechanisms to monitor and control remote access methods. link 37
NIST_SP_800-53_R5 AC-4 NIST_SP_800-53_R5_AC-4 NIST SP 800-53 Rev. 5 AC-4 Access Control Information Flow Enforcement Shared n/a Enforce approved authorizations for controlling the flow of information within the system and between connected systems based on [Assignment: organization-defined information flow control policies]. link 52
NIST_SP_800-53_R5 SC-7 NIST_SP_800-53_R5_SC-7 NIST SP 800-53 Rev. 5 SC-7 System and Communications Protection Boundary Protection Shared n/a a. Monitor and control communications at the external managed interfaces to the system and at key internal managed interfaces within the system; b. Implement subnetworks for publicly accessible system components that are [Selection: physically;logically] separated from internal organizational networks; and c. Connect to external networks or systems only through managed interfaces consisting of boundary protection devices arranged in accordance with an organizational security and privacy architecture. link 52
NIST_SP_800-53_R5 SC-7(3) NIST_SP_800-53_R5_SC-7(3) NIST SP 800-53 Rev. 5 SC-7 (3) System and Communications Protection Access Points Shared n/a Limit the number of external network connections to the system. link 51
NL_BIO_Cloud_Theme U.07.1(2) NL_BIO_Cloud_Theme_U.07.1(2) NL_BIO_Cloud_Theme_U.07.1(2) U.07 Data separation Isolated n/a Permanent isolation of data is realized within a multi-tenant architecture. Patches and adjustments of applications and infrastructure are realized in a controlled manner for all cloud services that the CSC purchases. 57
NZ_ISM_v3.5 INF-9 NZ_ISM_v3.5_INF-9 NZISM Security Benchmark INF-9 Infrastructure 10.8.35 Security Architecture Customer n/a It is important that the principles of separation and segregation as well as the system classification are incorporated into the overall security architecture to maximise design and operational efficiency and to provide and support essential security to the network design. link 17
NZISM_Security_Benchmark_v1.1 INF-9 NZISM_Security_Benchmark_v1.1_INF-9 NZISM Security Benchmark INF-9 Infrastructure 10.8.35 Security Architecture Customer Security architectures MUST apply the principles of separation and segregation. It is important that the principles of separation and segregation as well as the system classification are incorporated into the overall security architecture to maximise design and operational efficiency and to provide and support essential security to the network design. link 16
NZISM_v3.7 5.1.21.C.02. NZISM_v3.7_5.1.21.C.02. NZISM v3.7 5.1.21.C.02. Documentation Fundamentals 5.1.21.C.02. - To establish a systematic approach to reviewing information security documentation, Shared n/a Agencies SHOULD ensure that information security documentation is reviewed: 1. At least annually; or 2. In response to significant changes in the environment, business or system; and 3. With the date of the most recent review being recorded on each document. 6
NZISM_v3.7 6.4.6.C.01. NZISM_v3.7_6.4.6.C.01. NZISM v3.7 6.4.6.C.01. Business Continuity and Disaster Recovery 6.4.6.C.01. - To enhance operational resilience. Shared n/a Agencies SHOULD: 1.Identify vital records; 2. backup all vital records; 3. store copies of critical information, with associated documented recovery procedures, offsite and secured in accordance with the requirements for the highest 4. 4. classification of the information; and 5. test backup and restoration processes regularly to confirm their effectiveness. 14
NZISM_v3.7 7.3.11.C.01. NZISM_v3.7_7.3.11.C.01. NZISM v3.7 7.3.11.C.01. Managing Information Security Incidents 7.3.11.C.01. - To support comprehensive investigations and ensure accountability Shared n/a Agencies SHOULD: 1. transfer a copy of raw audit trails and other relevant data onto media for secure archiving, as well as securing manual log records for retention; and 2. ensure that all personnel involved in the investigation maintain a record of actions undertaken to support the investigation. 8
NZISM_v3.7 7.3.6.C.01. NZISM_v3.7_7.3.6.C.01. NZISM v3.7 7.3.6.C.01. Managing Information Security Incidents 7.3.6.C.01. - To enhance incident management and oversight. Shared n/a Agencies SHOULD ensure that all information security incidents are recorded in a register. 8
RBI_CSF_Banks_v2016 14.1 RBI_CSF_Banks_v2016_14.1 Anti-Phishing Anti-Phishing-14.1 n/a Subscribe to Anti-phishing/anti-rouge app services from external service providers for identifying and taking down phishing websites/rouge applications. 28
RBI_CSF_Banks_v2016 7.7 RBI_CSF_Banks_v2016_7.7 Patch/Vulnerability & Change Management Patch/Vulnerability & Change Management-7.7 n/a Periodically evaluate the access device configurations and patch levels to ensure that all access points, nodes between (i) different VLANs in the Data Centre (ii) LAN/WAN interfaces (iii) bank???s network to external network and interconnections with partner, vendor and service provider networks are to be securely configured. 25
RMiT_v1.0 10.33 RMiT_v1.0_10.33 RMiT 10.33 Network Resilience Network Resilience - 10.33 Shared n/a A financial institution must design a reliable, scalable and secure enterprise network that is able to support its business activities, including future growth plans. link 27
SOC_2023 CC2.3 SOC_2023_CC2.3 SOC 2023 CC2.3 Information and Communication To facilitate effective internal communication. Shared n/a Entity to communicate with external parties regarding matters affecting the functioning of internal control. 219
SOC_2023 CC5.3 SOC_2023_CC5.3 SOC 2023 CC5.3 Control Activities To maintain alignment with organizational objectives and regulatory requirements. Shared n/a Entity deploys control activities through policies that establish what is expected and in procedures that put policies into action by establishing Policies and Procedures to Support Deployment of Management’s Directives, Responsibility and Accountability for Executing Policies and Procedures, perform tasks in a timely manner, taking corrective actions, perform using competent personnel and reassess policies and procedures. 230
SOC_2023 CC6.1 SOC_2023_CC6.1 SOC 2023 CC6.1 Logical and Physical Access Controls To mitigate security events and ensuring the confidentiality, integrity, and availability of critical information assets. Shared n/a Entity implements logical access security software, infrastructure, and architectures over protected information assets to protect them from security events to meet the entity's objectives by identifying and managing the inventory of information assets, restricting logical access, identification and authentication of users, consider network segmentation, manage points of access, restricting access of information assets, managing identification and authentication, managing credentials for infrastructure and software, using encryption to protect data and protect using encryption keys. 129
SOC_2023 CC6.7 SOC_2023_CC6.7 404 not found n/a n/a 52
SOC_2023 CC7.4 SOC_2023_CC7.4 SOC 2023 CC7.4 Systems Operations To effectively manage security incidents, minimize their impact, and protect assets, operations, and reputation. Shared n/a The entity responds to identified security incidents by: a. Executing a defined incident-response program to understand, contain, remediate, and communicate security incidents by assigning roles and responsibilities; b. Establishing procedures to contain security incidents; c. Mitigating ongoing security incidents, End Threats Posed by Security Incidents; d. Restoring operations; e. Developing and Implementing Communication Protocols for Security Incidents; f. Obtains Understanding of Nature of Incident and Determines Containment Strategy; g. Remediation Identified Vulnerabilities; h. Communicating Remediation Activities; and, i. Evaluating the Effectiveness of Incident Response and periodic incident evaluations. 214
SWIFT_CSCF_2024 2.1 SWIFT_CSCF_2024_2.1 SWIFT Customer Security Controls Framework 2024 2.1 Risk Management Internal Data Flow Security Shared The protection of internal data flows safeguards against unintended disclosure, modification, and access of the data while in transit. To ensure the confidentiality, integrity, and authenticity of application data flows between ’user’s Swift-related components. 48
SWIFT_CSCF_2024 2.4A SWIFT_CSCF_2024_2.4A SWIFT Customer Security Controls Framework 2024 2.4A Risk Management Back Office Data Flow Security Shared Protection of data flows or connections between the back-office first hops as seen from the Swift or customer secure zone and the Swift infrastructure safeguards against person-in-the-middle attack, unintended disclosure, modification, and data access while in transit. To ensure the confidentiality, integrity, and mutual authenticity of data flowing between on-premises or remote Swift infrastructure components and the back-office first hops they connect to. 24
SWIFT_CSCF_v2021 1.1 SWIFT_CSCF_v2021_1.1 SWIFT CSCF v2021 1.1 SWIFT Environment Protection SWIFT Environment Protection n/a Ensure the protection of the user's local SWIFT infrastructure from potentially compromised elements of the general IT environment and external environment. link 28
U.07.1 - Isolated U.07.1 - Isolated 404 not found n/a n/a 56
Initiatives usage
Initiative DisplayName Initiative Id Initiative Category State Type
[Deprecated]: Azure Security Benchmark v2 bb522ac1-bc39-4957-b194-429bcd3bcb0b Regulatory Compliance Deprecated BuiltIn
[Deprecated]: New Zealand ISM Restricted d1a462af-7e6d-4901-98ac-61570b4ed22a Regulatory Compliance Deprecated BuiltIn
[Deprecated]: New Zealand ISM Restricted v3.5 93d2179e-3068-c82f-2428-d614ae836a04 Regulatory Compliance Deprecated BuiltIn
[Preview]: CMMC 2.0 Level 2 4e50fd13-098b-3206-61d6-d1d78205cb45 Regulatory Compliance Preview BuiltIn
[Preview]: Control the use of Microsoft SQL in a Virtual Enclave 0fbe78a5-1722-4f1b-83a5-89c14151fa60 VirtualEnclaves Preview BuiltIn
[Preview]: Reserve Bank of India - IT Framework for Banks d0d5578d-cc08-2b22-31e3-f525374f235a Regulatory Compliance Preview BuiltIn
[Preview]: SWIFT CSP-CSCF v2021 abf84fac-f817-a70c-14b5-47eec767458a Regulatory Compliance Preview BuiltIn
Canada Federal PBMM 3-1-2020 f8f5293d-df94-484a-a3e7-6b422a999d91 Regulatory Compliance GA BuiltIn
CSA CSA Cloud Controls Matrix v4.0.12 8791506a-dec4-497a-a83f-3abfde37c400 Regulatory Compliance GA BuiltIn
Cyber Essentials v3.1 b2f588d7-1ed5-47c7-977d-b93dff520c4c Regulatory Compliance GA BuiltIn
EU 2022/2555 (NIS2) 2022 42346945-b531-41d8-9e46-f95057672e88 Regulatory Compliance GA BuiltIn
EU General Data Protection Regulation (GDPR) 2016/679 7326812a-86a4-40c8-af7c-8945de9c4913 Regulatory Compliance GA BuiltIn
Evaluate Private Link Usage Across All Supported Azure Resources 7379ef4c-89b0-48b6-a5cc-fd3a75eaef93 SDN GA BuiltIn
FBI Criminal Justice Information Services (CJIS) v5.9.5 4fcabc2a-30b2-4ba5-9fbb-b1a4e08fb721 Regulatory Compliance GA BuiltIn
FedRAMP High d5264498-16f4-418a-b659-fa7ef418175f Regulatory Compliance GA BuiltIn
FedRAMP Moderate e95f5a9f-57ad-4d03-bb0b-b1d16db93693 Regulatory Compliance GA BuiltIn
FFIEC CAT 2017 1d5dbdd5-6f93-43ce-a939-b19df3753cf7 Regulatory Compliance GA BuiltIn
HITRUST CSF v11.3 e0d47b75-5d99-442a-9d60-07f2595ab095 Regulatory Compliance GA BuiltIn
Microsoft cloud security benchmark 1f3afdf9-d0c9-4c3d-847f-89da613e70a8 Security Center GA BuiltIn
New Zealand ISM 4f5b1359-4f8e-4d7c-9733-ea47fcde891e Regulatory Compliance GA BuiltIn
NIST SP 800-171 Rev. 2 03055927-78bd-4236-86c0-f36125a10dc9 Regulatory Compliance GA BuiltIn
NIST SP 800-53 R5.1.1 60205a79-6280-4e20-a147-e2011e09dc78 Regulatory Compliance GA BuiltIn
NIST SP 800-53 Rev. 4 cf25b9c1-bd23-4eb6-bd2c-f4f3ac644a5f Regulatory Compliance GA BuiltIn
NIST SP 800-53 Rev. 5 179d1daa-458f-4e47-8086-2a68d0d6c38f Regulatory Compliance GA BuiltIn
NL BIO Cloud Theme 6ce73208-883e-490f-a2ac-44aac3b3687f Regulatory Compliance GA BuiltIn
NL BIO Cloud Theme V2 d8b2ffbe-c6a8-4622-965d-4ade11d1d2ee Regulatory Compliance GA BuiltIn
NZISM v3.7 4476df0a-18ab-4bfe-b6ad-cccae1cf320f Regulatory Compliance GA BuiltIn
RMIT Malaysia 97a6d4f1-3bed-4cf4-ac5b-0e444c0408d6 Regulatory Compliance GA BuiltIn
SOC 2023 53ad89f5-8542-49e9-ba81-1cbd686e0d52 Regulatory Compliance GA BuiltIn
SWIFT Customer Security Controls Framework 2024 7499005e-df5a-45d9-810f-041cf346678c Regulatory Compliance GA BuiltIn
History
Date/Time (UTC ymd) (i) Change type Change detail
2021-01-13 16:08:35 change Minor (1.0.1 > 1.1.0)
2020-12-11 15:42:52 change Patch (1.0.0 > 1.0.1)
2020-07-08 14:28:08 change Previous DisplayName: Azure SQL Databases should have private endpoint connections
2020-07-01 14:50:07 add 7698e800-9299-47a6-b3b6-5a0fee576eed
JSON compare
compare mode: version left: version right:
JSON
api-version=2021-06-01
EPAC