last sync: 2024-Jul-26 18:17:39 UTC

Kubernetes clusters should be accessible only over HTTPS

Azure BuiltIn Policy definition

Source Azure Portal
Display name Kubernetes clusters should be accessible only over HTTPS
Id 1a5b4dca-0b6f-4cf5-907c-56316bc1bf3d
Version 8.1.0
Details on versioning
Category Kubernetes
Microsoft Learn
Description Use of HTTPS ensures authentication and protects data in transit from network layer eavesdropping attacks. This capability is currently generally available for Kubernetes Service (AKS), and in preview for Azure Arc enabled Kubernetes. For more info, visit https://aka.ms/kubepolicydoc
Mode Microsoft.Kubernetes.Data
Type BuiltIn
Preview False
Deprecated False
Effect Default
Deny
Allowed
audit, Audit, deny, Deny, disabled, Disabled
RBAC role(s) none
Rule aliases none
Rule resource types IF (2)
Microsoft.ContainerService/managedClusters
Microsoft.Kubernetes/connectedClusters
Compliance
The following 21 compliance controls are associated with this Policy definition 'Kubernetes clusters should be accessible only over HTTPS' (1a5b4dca-0b6f-4cf5-907c-56316bc1bf3d)
Control Domain Control Name MetadataId Category Title Owner Requirements Description Info Policy#
Azure_Security_Benchmark_v2.0 DP-4 Azure_Security_Benchmark_v2.0_DP-4 Azure Security Benchmark DP-4 Data Protection Encrypt sensitive information in transit Shared To complement access controls, data in transit should be protected against ‘out of band’ attacks (e.g. traffic capture) using encryption to ensure that attackers cannot easily read or modify the data. While this is optional for traffic on private networks, this is critical for traffic on external and public networks. For HTTP traffic, ensure that any clients connecting to your Azure resources can negotiate TLS v1.2 or greater. For remote management, use SSH (for Linux) or RDP/TLS (for Windows) instead of an unencrypted protocol. Obsoleted SSL, TLS, and SSH versions and protocols, and weak ciphers should be disabled. By default, Azure provides encryption for data in transit between Azure data centers. Understand encryption in transit with Azure: https://docs.microsoft.com/azure/security/fundamentals/encryption-overview#encryption-of-data-in-transit Information on TLS Security: https://docs.microsoft.com/security/engineering/solving-tls1-problem Double encryption for Azure data in transit: https://docs.microsoft.com/azure/security/fundamentals/double-encryption#data-in-transit n/a link 12
Azure_Security_Benchmark_v3.0 DP-3 Azure_Security_Benchmark_v3.0_DP-3 Microsoft cloud security benchmark DP-3 Data Protection Encrypt sensitive data in transit Shared **Security Principle:** Protect the data in transit against 'out of band' attacks (such as traffic capture) using encryption to ensure that attackers cannot easily read or modify the data. Set the network boundary and service scope where data in transit encryption is mandatory inside and outside of the network. While this is optional for traffic on private networks, this is critical for traffic on external and public networks. **Azure Guidance:** Enforce secure transfer in services such as Azure Storage, where a native data in transit encryption feature is built in. Enforce HTTPS for workload web application and services by ensuring that any clients connecting to your Azure resources use transportation layer security (TLS) v1.2 or later. For remote management of VMs, use SSH (for Linux) or RDP/TLS (for Windows) instead of an unencrypted protocol. Note: Data in transit encryption is enabled for all Azure traffic traveling between Azure datacenters. TLS v1.2 or later is enabled on most Azure PaaS services by default. **Implementation and additional context:** Double encryption for Azure data in transit: https://docs.microsoft.com/azure/security/fundamentals/double-encryption#data-in-transit Understand encryption in transit with Azure: https://docs.microsoft.com/azure/security/fundamentals/encryption-overview#encryption-of-data-in-transit Information on TLS Security: https://docs.microsoft.com/security/engineering/solving-tls1-problem Enforce secure transfer in Azure storage: https://docs.microsoft.com/azure/storage/common/storage-require-secure-transfer?toc=/azure/storage/blobs/toc.json#require-secure-transfer-for-a-new-storage-account n/a link 15
CMMC_2.0_L2 SC.L2-3.13.8 CMMC_2.0_L2_SC.L2-3.13.8 404 not found n/a n/a 16
FedRAMP_High_R4 SC-8 FedRAMP_High_R4_SC-8 FedRAMP High SC-8 System And Communications Protection Transmission Confidentiality And Integrity Shared n/a The information system protects the [Selection (one or more): confidentiality; integrity] of transmitted information. Supplemental Guidance: This control applies to both internal and external networks and all types of information system components from which information can be transmitted (e.g., servers, mobile devices, notebook computers, printers, copiers, scanners, facsimile machines). Communication paths outside the physical protection of a controlled boundary are exposed to the possibility of interception and modification. Protecting the confidentiality and/or integrity of organizational information can be accomplished by physical means (e.g., by employing physical distribution systems) or by logical means (e.g., employing encryption techniques). Organizations relying on commercial providers offering transmission services as commodity services rather than as fully dedicated services (i.e., services which can be highly specialized to individual customer needs), may find it difficult to obtain the necessary assurances regarding the implementation of needed security controls for transmission confidentiality/integrity. In such situations, organizations determine what types of confidentiality/integrity services are available in standard, commercial telecommunication service packages. If it is infeasible or impractical to obtain the necessary security controls and assurances of control effectiveness through appropriate contracting vehicles, organizations implement appropriate compensating security controls or explicitly accept the additional risk. Related controls: AC-17, PE-4. References: FIPS Publications 140-2, 197; NIST Special Publications 800-52, 800-77, 800-81, 800-113; CNSS Policy 15; NSTISSI No. 7003. link 15
FedRAMP_High_R4 SC-8(1) FedRAMP_High_R4_SC-8(1) FedRAMP High SC-8 (1) System And Communications Protection Cryptographic Or Alternate Physical Protection Shared n/a The information system implements cryptographic mechanisms to [Selection (one or more): prevent unauthorized disclosure of information; detect changes to information] during transmission unless otherwise protected by [Assignment: organization-defined alternative physical safeguards]. Supplemental Guidance: Encrypting information for transmission protects information from unauthorized disclosure and modification. Cryptographic mechanisms implemented to protect information integrity include, for example, cryptographic hash functions which have common application in digital signatures, checksums, and message authentication codes. Alternative physical security safeguards include, for example, protected distribution systems. Related control: SC-13. link 14
FedRAMP_Moderate_R4 SC-8 FedRAMP_Moderate_R4_SC-8 FedRAMP Moderate SC-8 System And Communications Protection Transmission Confidentiality And Integrity Shared n/a The information system protects the [Selection (one or more): confidentiality; integrity] of transmitted information. Supplemental Guidance: This control applies to both internal and external networks and all types of information system components from which information can be transmitted (e.g., servers, mobile devices, notebook computers, printers, copiers, scanners, facsimile machines). Communication paths outside the physical protection of a controlled boundary are exposed to the possibility of interception and modification. Protecting the confidentiality and/or integrity of organizational information can be accomplished by physical means (e.g., by employing physical distribution systems) or by logical means (e.g., employing encryption techniques). Organizations relying on commercial providers offering transmission services as commodity services rather than as fully dedicated services (i.e., services which can be highly specialized to individual customer needs), may find it difficult to obtain the necessary assurances regarding the implementation of needed security controls for transmission confidentiality/integrity. In such situations, organizations determine what types of confidentiality/integrity services are available in standard, commercial telecommunication service packages. If it is infeasible or impractical to obtain the necessary security controls and assurances of control effectiveness through appropriate contracting vehicles, organizations implement appropriate compensating security controls or explicitly accept the additional risk. Related controls: AC-17, PE-4. References: FIPS Publications 140-2, 197; NIST Special Publications 800-52, 800-77, 800-81, 800-113; CNSS Policy 15; NSTISSI No. 7003. link 15
FedRAMP_Moderate_R4 SC-8(1) FedRAMP_Moderate_R4_SC-8(1) FedRAMP Moderate SC-8 (1) System And Communications Protection Cryptographic Or Alternate Physical Protection Shared n/a The information system implements cryptographic mechanisms to [Selection (one or more): prevent unauthorized disclosure of information; detect changes to information] during transmission unless otherwise protected by [Assignment: organization-defined alternative physical safeguards]. Supplemental Guidance: Encrypting information for transmission protects information from unauthorized disclosure and modification. Cryptographic mechanisms implemented to protect information integrity include, for example, cryptographic hash functions which have common application in digital signatures, checksums, and message authentication codes. Alternative physical security safeguards include, for example, protected distribution systems. Related control: SC-13. link 14
NIST_SP_800-171_R2_3 .13.8 NIST_SP_800-171_R2_3.13.8 NIST SP 800-171 R2 3.13.8 System and Communications Protection Implement cryptographic mechanisms to prevent unauthorized disclosure of CUI during transmission unless otherwise protected by alternative physical safeguards. Shared Microsoft and the customer share responsibilities for implementing this requirement. This requirement applies to internal and external networks and any system components that can transmit information including servers, notebook computers, desktop computers, mobile devices, printers, copiers, scanners, and facsimile machines. Communication paths outside the physical protection of controlled boundaries are susceptible to both interception and modification. Organizations relying on commercial providers offering transmission services as commodity services rather than as fully dedicated services (i.e., services which can be highly specialized to individual customer needs), may find it difficult to obtain the necessary assurances regarding the implementation of the controls for transmission confidentiality. In such situations, organizations determine what types of confidentiality services are available in commercial telecommunication service packages. If it is infeasible or impractical to obtain the necessary safeguards and assurances of the effectiveness of the safeguards through appropriate contracting vehicles, organizations implement compensating safeguards or explicitly accept the additional risk. An example of an alternative physical safeguard is a protected distribution system (PDS) where the distribution medium is protected against electronic or physical intercept, thereby ensuring the confidentiality of the information being transmitted. See [NIST CRYPTO]. link 16
NIST_SP_800-53_R4 SC-8 NIST_SP_800-53_R4_SC-8 NIST SP 800-53 Rev. 4 SC-8 System And Communications Protection Transmission Confidentiality And Integrity Shared n/a The information system protects the [Selection (one or more): confidentiality; integrity] of transmitted information. Supplemental Guidance: This control applies to both internal and external networks and all types of information system components from which information can be transmitted (e.g., servers, mobile devices, notebook computers, printers, copiers, scanners, facsimile machines). Communication paths outside the physical protection of a controlled boundary are exposed to the possibility of interception and modification. Protecting the confidentiality and/or integrity of organizational information can be accomplished by physical means (e.g., by employing physical distribution systems) or by logical means (e.g., employing encryption techniques). Organizations relying on commercial providers offering transmission services as commodity services rather than as fully dedicated services (i.e., services which can be highly specialized to individual customer needs), may find it difficult to obtain the necessary assurances regarding the implementation of needed security controls for transmission confidentiality/integrity. In such situations, organizations determine what types of confidentiality/integrity services are available in standard, commercial telecommunication service packages. If it is infeasible or impractical to obtain the necessary security controls and assurances of control effectiveness through appropriate contracting vehicles, organizations implement appropriate compensating security controls or explicitly accept the additional risk. Related controls: AC-17, PE-4. References: FIPS Publications 140-2, 197; NIST Special Publications 800-52, 800-77, 800-81, 800-113; CNSS Policy 15; NSTISSI No. 7003. link 15
NIST_SP_800-53_R4 SC-8(1) NIST_SP_800-53_R4_SC-8(1) NIST SP 800-53 Rev. 4 SC-8 (1) System And Communications Protection Cryptographic Or Alternate Physical Protection Shared n/a The information system implements cryptographic mechanisms to [Selection (one or more): prevent unauthorized disclosure of information; detect changes to information] during transmission unless otherwise protected by [Assignment: organization-defined alternative physical safeguards]. Supplemental Guidance: Encrypting information for transmission protects information from unauthorized disclosure and modification. Cryptographic mechanisms implemented to protect information integrity include, for example, cryptographic hash functions which have common application in digital signatures, checksums, and message authentication codes. Alternative physical security safeguards include, for example, protected distribution systems. Related control: SC-13. link 14
NIST_SP_800-53_R5 SC-8 NIST_SP_800-53_R5_SC-8 NIST SP 800-53 Rev. 5 SC-8 System and Communications Protection Transmission Confidentiality and Integrity Shared n/a Protect the [Selection (OneOrMore): confidentiality;integrity] of transmitted information. link 15
NIST_SP_800-53_R5 SC-8(1) NIST_SP_800-53_R5_SC-8(1) NIST SP 800-53 Rev. 5 SC-8 (1) System and Communications Protection Cryptographic Protection Shared n/a Implement cryptographic mechanisms to [Selection (OneOrMore): prevent unauthorized disclosure of information;detect changes to information] during transmission. link 14
NZ_ISM_v3.5 SS-3 NZ_ISM_v3.5_SS-3 NZISM Security Benchmark SS-3 Software security 14.1.9 Maintaining hardened SOEs Customer n/a Whilst a SOE can be sufficiently hardened when it is deployed, its security will progressively degrade over time. Agencies can address the degradation of the security of a SOE by ensuring that patches are continually applied, system users are not able to disable or bypass security functionality and antivirus and other security software is appropriately maintained with the latest signatures and updates. End Point Agents monitor traffic and apply security policies on applications, storage interfaces and data in real-time. Administrators actively block or monitor and log policy breaches. The End Point Agent can also create forensic monitoring to facilitate incident investigation. End Point Agents can monitor user activity, such as the cut, copy, paste, print, print screen operations and copying data to external drives and other devices. The Agent can then apply policies to limit such activity. link 17
RMiT_v1.0 Appendix_5.6 RMiT_v1.0_Appendix_5.6 RMiT Appendix 5.6 Control Measures on Cybersecurity Control Measures on Cybersecurity - Appendix 5.6 Customer n/a Ensure security controls for remote access to server include the following: (a) restrict access to only hardened and locked down end-point devices; (b) use secure tunnels such as TLS and VPN IPSec; (c) deploy ‘gateway’ server with adequate perimeter defences and protection such as firewall, IPS and antivirus; and (d) close relevant ports immediately upon expiry of remote access. link 19
SOC_2 CC6.1 SOC_2_CC6.1 SOC 2 Type 2 CC6.1 Logical and Physical Access Controls Logical access security software, infrastructure, and architectures Shared The customer is responsible for implementing this recommendation. The following points of focus, specifically related to all engagements using the trust services criteria, highlight important characteristics relating to this criterion: • Identifies and Manages the Inventory of Information Assets — The entity identifies, Page 29 TSP Ref. # TRUST SERVICES CRITERIA AND POINTS OF FOCUS inventories, classifies, and manages information assets. • Restricts Logical Access — Logical access to information assets, including hardware, data (at-rest, during processing, or in transmission), software, administrative authorities, mobile devices, output, and offline system components is restricted through the use of access control software and rule sets. • Identifies and Authenticates Users — Persons, infrastructure, and software are identified and authenticated prior to accessing information assets, whether locally or remotely. • Considers Network Segmentation — Network segmentation permits unrelated portions of the entity's information system to be isolated from each other. • Manages Points of Access — Points of access by outside entities and the types of data that flow through the points of access are identified, inventoried, and managed. The types of individuals and systems using each point of access are identified, documented, and managed. • Restricts Access to Information Assets — Combinations of data classification, separate data structures, port restrictions, access protocol restrictions, user identification, and digital certificates are used to establish access-control rules for information assets. • Manages Identification and Authentication — Identification and authentication requirements are established, documented, and managed for individuals and systems accessing entity information, infrastructure, and software. • Manages Credentials for Infrastructure and Software — New internal and external infrastructure and software are registered, authorized, and documented prior to being granted access credentials and implemented on the network or access point. Credentials are removed and access is disabled when access is no longer required or the infrastructure and software are no longer in use. • Uses Encryption to Protect Data — The entity uses encryption to supplement other measures used to protect data at rest, when such protections are deemed appropriate based on assessed risk. • Protects Encryption Keys — Processes are in place to protect encryption keys during generation, storage, use, and destruction 79
SOC_2 CC6.6 SOC_2_CC6.6 SOC 2 Type 2 CC6.6 Logical and Physical Access Controls Security measures against threats outside system boundaries Shared The customer is responsible for implementing this recommendation. • Restricts Access — The types of activities that can occur through a communication channel (for example, FTP site, router port) are restricted. • Protects Identification and Authentication Credentials — Identification and authentication credentials are protected during transmission outside its system boundaries. • Requires Additional Authentication or Credentials — Additional authentication information or credentials are required when accessing the system from outside its boundaries. • Implements Boundary Protection Systems — Boundary protection systems (for example, firewalls, demilitarized zones, and intrusion detection systems) are implemented to protect external access points from attempts and unauthorized access and are monitored to detect such attempts 41
SOC_2 CC6.7 SOC_2_CC6.7 SOC 2 Type 2 CC6.7 Logical and Physical Access Controls Restrict the movement of information to authorized users Shared The customer is responsible for implementing this recommendation. • Restricts the Ability to Perform Transmission — Data loss prevention processes and technologies are used to restrict ability to authorize and execute transmission, movement, and removal of information. • Uses Encryption Technologies or Secure Communication Channels to Protect Data — Encryption technologies or secured communication channels are used to protect transmission of data and other communications beyond connectivity access points. • Protects Removal Media — Encryption technologies and physical asset protections are used for removable media (such as USB drives and backup tapes), as appropriate. • Protects Mobile Devices — Processes are in place to protect mobile devices (such as laptops, smart phones, and tablets) that serve as information assets 30
SWIFT_CSCF_v2021 2.1 SWIFT_CSCF_v2021_2.1 SWIFT CSCF v2021 2.1 Reduce Attack Surface and Vulnerabilities Internal Data Flow Security n/a Ensure the confidentiality, integrity, and authenticity of application data flows between local SWIFT-related applications. link 14
U.05.1 - Cryptographic measures U.05.1 - Cryptographic measures 404 not found n/a n/a 17
U.11.1 - Policy U.11.1 - Policy 404 not found n/a n/a 18
U.11.2 - Cryptographic measures U.11.2 - Cryptographic measures 404 not found n/a n/a 18
Initiatives usage
Initiative DisplayName Initiative Id Initiative Category State Type
[Deprecated]: Azure Security Benchmark v2 bb522ac1-bc39-4957-b194-429bcd3bcb0b Regulatory Compliance Deprecated BuiltIn
[Deprecated]: Deny or Deploy and append TLS requirements and SSL enforcement on resources without Encryption in transit Enforce-EncryptTransit Encryption Deprecated ALZ
[Deprecated]: New Zealand ISM Restricted v3.5 93d2179e-3068-c82f-2428-d614ae836a04 Regulatory Compliance Deprecated BuiltIn
[Preview]: CMMC 2.0 Level 2 4e50fd13-098b-3206-61d6-d1d78205cb45 Regulatory Compliance Preview BuiltIn
[Preview]: SWIFT CSP-CSCF v2021 abf84fac-f817-a70c-14b5-47eec767458a Regulatory Compliance Preview BuiltIn
Deny or Deploy and append TLS requirements and SSL enforcement on resources without Encryption in transit Enforce-EncryptTransit_20240509 Encryption GA ALZ
FedRAMP High d5264498-16f4-418a-b659-fa7ef418175f Regulatory Compliance GA BuiltIn
FedRAMP Moderate e95f5a9f-57ad-4d03-bb0b-b1d16db93693 Regulatory Compliance GA BuiltIn
Microsoft cloud security benchmark 1f3afdf9-d0c9-4c3d-847f-89da613e70a8 Security Center GA BuiltIn
NIST SP 800-171 Rev. 2 03055927-78bd-4236-86c0-f36125a10dc9 Regulatory Compliance GA BuiltIn
NIST SP 800-53 Rev. 4 cf25b9c1-bd23-4eb6-bd2c-f4f3ac644a5f Regulatory Compliance GA BuiltIn
NIST SP 800-53 Rev. 5 179d1daa-458f-4e47-8086-2a68d0d6c38f Regulatory Compliance GA BuiltIn
NL BIO Cloud Theme 6ce73208-883e-490f-a2ac-44aac3b3687f Regulatory Compliance GA BuiltIn
RMIT Malaysia 97a6d4f1-3bed-4cf4-ac5b-0e444c0408d6 Regulatory Compliance GA BuiltIn
SOC 2 Type 2 4054785f-702b-4a98-9215-009cbd58b141 Regulatory Compliance GA BuiltIn
History
Date/Time (UTC ymd) (i) Change type Change detail
2023-05-01 17:41:52 change Minor (8.0.1 > 8.1.0)
2022-10-21 16:42:13 change Patch (8.0.0 > 8.0.1)
2022-09-19 17:41:40 change Major (7.0.0 > 8.0.0)
2022-07-08 16:32:07 change Major (6.1.0 > 7.0.0)
2022-04-01 20:29:14 change Minor (6.0.1 > 6.1.0)
2021-12-06 22:17:57 change Patch (6.0.0 > 6.0.1)
2021-03-02 15:11:40 change Major (5.0.2 > 6.0.0)
2021-02-03 15:09:01 change Patch (5.0.1 > 5.0.2)
2020-12-11 15:42:52 change Major (4.0.1 > 5.0.1)
2020-09-15 14:06:41 change Previous DisplayName: [Preview]: Enforce HTTPS ingress in Kubernetes cluster
2020-04-23 15:06:19 change Previous DisplayName: [Preview]: [AKS Engine] Enforce HTTPS ingress in Kubernetes cluster
2019-10-29 23:04:36 add 1a5b4dca-0b6f-4cf5-907c-56316bc1bf3d
JSON compare
compare mode: version left: version right:
JSON
api-version=2021-06-01
EPAC